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Abstract. According to the World Health Organisation,
diseases of the cardiovascular system (CVS) are currently
the main cause of death all over the world. Therefore,
their understanding, prediction, and prevention with the
help of non-invasive, cost effective methods is of great
interest. Analysis of the heart rate and its change over
time can give valuable insight into the health status of
a patient, and is easily derived from electrocardiogram
(ECG) data. Reduced heart rate variability (HRV) is asso-
ciated to an increased probability of dying after myocar-
dial infarctions and indicates inflammatory processes. It
is symptomatic of mental disorders such as depression
and burn-out. Different approaches in modeling and
simulation of HRV can provide new insight into the non-
linear interplay of cardiovascular regulation. In this work,
three models for HRV are implemented and compared.
They include the firing rate of the baroreceptors, respi-
ration, activity of the sympathetic and parasympathetic
nervous system, stroke volume, cardiac noradrenaline
and acetylcholine concentration, as well as a windkessel
model including peripheral resistance and arterial com-
pliance. First, an existing model for HRV based on respi-
ration and baroreflex activity was implemented and an-
alyzed. A second model was created through adaption
of the first model. Based on a model for the autonomic
response to orthostatic stress, a third model was imple-
mented as well. All models were realized in Simulink
2017b, and their validation is performed based on 60
five-minute ECG recordings from 30 subjects. The sim-
ulation results are compared to subject data based on
the standards of HRV measurement by the Task Force
of the European Society of Cardiology and the North

American Society of Pacing and Electrophysiology. Each
of the three modeling approaches showed specific ad-
vantages, disadvantages, and possibilities for further im-
provement. The results provide basis for extension of
HRV models, paving the way for the future usage of
model prediction in the field of cardiovascular diseases.

Introduction

Heart rate variability (HRV), the change in time inter-

vals between successive heart beats, reflects the activity

of the autonomous nervous system, and gives informa-

tion about the overall condition of the cardiovascular

system. The heart rate (HR) keeps on changing as a

result of non-static physiological and psychological

regulatory mechanisms, which interact in a non-linear

way. HRV is a sign of a healthy cardiovascular system.

On the contrary, a reduced change between adjacent

interbeat times can indicate health problems such as

coronary artherosclerosis, inflammation, and depres-

sion. HRV decreases with age, and depends on the HR,

since a higher HR results in shorter interbeat intervals,

and therefore leaves less time for changes [1].

As HRV can be easily derived from electrocardio-

gram (ECG) data and therefore is a simple and non-

invasive diagnostic tool, great interest lies in attain-

ing a deeper understanding of its nonlinear regulatory

mechanisms, using modeling and simulation. Creating

a model which is complex enough to reproduce impor-

tant characteristics of HRV, but still simple enough to

maintain applicability, can lead to a deeper physiolog-

ical insight [2], opening up new possibilities for diag-

nostics and therapy [3].
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1 Background
1.1 Controlling Mechanisms of the

Cardiovascular System

The Autonomic Nervous System The auto-

nomic nervous system (ANS) has two antagonistic

branches: the sympathetic and the parasympathetic ner-

vous system. The sympathetic system is mainly acti-

vated during exercise and emergency situations to in-

crease HR and blood flow. The parasympathetic system

is dominant during rest conditions. It regulates basic

body funcions and decreases the HR [4]. The excite-

ment of their effector organs happens via the release of

acetylcholine or noradrenaline [5].

Efferent nervous activity of the ANS is mostly reg-

ulated by autonomic reflexes, for example the barore-

ceptor reflex[4]. The tissues of the heart are innervated

by both systems, but parasympathetic fibres are mainly

distributed to the atria, the sinus node, the AV-node,

and not to the ventricles. Through sympathetic stimula-

tion, noradrenaline is released regardless of the stretch

of the muscle fibres, causing stronger contractions, as

well as faster depolarisation and relaxation, resulting in

a higher HR. Parasympathetic activity antagonistically

prevents the release of noradrenaline from sympathetic

nerves. The parasympathetic HR reduction also comes

from a release of acetylcholine at the heart’s pacemaker

cells. The release of sympathetic noradrenaline also

causes the blood vessels in the body to contract, which

regulates blood pressure [6].

Continuous discharge of sympathetic nerve fibres

increases pumping by 30 percent compared to no sym-

pathetic stimulation. The average HR for young adults

of 70 beats per minute (bpm) can be increased up to

approximately 200 bpm by strong sympathetic stimula-

tion, while simultaneously intensifying the contraction

to as much as double normal, increasing the amount

of blood pumped and augmenting the ejection pressure

[6].

The Baroreflex The baroreceptors are nerve end-

ings located at the sinus caroticus and in the aortic

arch. They almost immediately generate nervous sig-

nals when stretched by high blood pressure. The sig-

nals are then forwarded to the brain stem. From there,

secondary signals increase the activity of the parasym-

pathetic center. This leads to a decrease in HR, a weaker

heart contraction, and vasodilation.

Conversely, low blood pressure has the opposite ef-

fect, causing oscillation of the baroreceptor reflex. If

arterial blood pressure is chronically increased or de-

creased, baroceptors activity changes at first, but adapts

to the new pressure level in 1 to 2 days[4].

The Arterial Windkessel Effect The wall of the

thoracic aorta contains a lot of elastic fibres. Therefore,

the blood ejected from the heart during systole causes

the aorta to stretch, which reduces the systolic pressure

rise and subsequently has an effect on the barorecep-

tors. The aorta then returns to its original shape, pushes

the blood further into the arterial system and ensures a

rather continuous blood flow [5].

The Effect of Respiration on the Heart Respi-

ratory sinus arrhythmia (RSA) is the synchronous vari-

ation of HR and respiration. The stroke volume of the

heart is almost equivalent to the blood volume in the

capillary bed, and as a consequence, variation of the HR

during inspiration and expiration affects the efficiency

of the gas exchange[7].

During inspiration, the intervals between successive

heartbeats are shortened, whereas during expiration

longer intervals are observed. RSA can be influenced

by cardiopulmonary function, sleep or wakefulness,

age, and many other factors [7].

1.2 State of the Art

Existing models include various components of the car-

diovascular system and make use of highly statistical

approaches [8, 9], as well as differential equations [10],

and discrete events [11], but a lack of detailed physio-

logical reasoning is found in a lot of them.

There is broad consensus about the physiological

reasonableness of the integral pulse frequency modu-

lation (IPFM) model with constant or varying threshold

for the generation of a heart beat time series [12, 13].

A simplistic approach for including the effect of res-

piration on the HR is presented by Brennan et al. [14].

Although this approach is physiologically reasonable,

respiratory influences on the HR are usually included

into the parasympathetic activity[15].

Aside from respiration, the baroreflex is often part

of HRV models. Olufsen et al. present a model of

baroreflex regulation of the HR during orthostatic

stress, based on different types of baroreceptors [16].
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Instead of including more effectors than the barore-

flex, Ursino proposed a compartment model, which in-

cludes a more detailed description of the left and right

heart, the pulmonary circulation, and their respective re-

sistances and compliances, which are modulated by the

activity of the ANS [17].

DeBoer, Karemaker, and Strackee [11] created a

more extensive model based on difference equations,

amongst other factors including an RR-interval depen-

dent contractility of the myocard.

A closed loop model, which includes respiration, the

baroreceptor reflex, ANS activity, a windkessel time

constant, contractility, and even neurotransmitters lev-

els, is proposed by Seidel and Herzel. Opposite to the

previously mentioned model, it combines discrete sig-

nals and continuous ones. A unique characteristic of

this model is the use of a phase response curve, which

modulates the input of the parasympathetic nervous sys-

tem depending on its time of occurrence during the

heart cycle [2].

2 Methods

Integral Pulse Frequency Modulation Model
Many authors assume a modulating effect of the ANS

activity on the sino-atrial node[12]. This influence is

summarized as a function m(t) with zero mean and a

rather small amplitude. The beat occurrence times tk
generated by the Integral Pulse Frequency Modulation

(IPFM) Model can then be written as

k =
∫ tk

0

1+m(t)
T

dt k = 1,2,3..., (1)

Poincaré Plots Poincaré plots allow the geometri-

cal analysis, and quantification of HRV by plotting each

RR-interval against the following one, resulting in a

scatterplot. It simultaneously gives an overview of the

overall, short and long term beat-to-beat variability[18].

To characterize the shape of a Poincaré plot, the ellipse

fitting technique is used. Other Statistical measures for

short and long term variability are SD1 and SD2 as de-

scribed by Brennan [19].

3 Models

3.1 Model 1: An HRV model including
respiration and baroreflex

As a first nonlinear model for HRV, presented by Henrik

Seidel and Hanspeter Herzel including baroreceptors,

ANS activity, neurotransmitters, contractility, vasocon-

striction, and a windkessel, depicted in Figure 1, was

implemented. All parameters were chosen according to

the original publication [2].

3.2 Model 2: An Adapted Seidel and Herzel
Model

The following paragraphs describe a second model,

based on the previously presented one, but with the aim

of creating a more physiologically accurate model.

Blood pressure and systolic duration The

blood pressure curve generated by the previous model

shows a sharp peak at the end of the systole, followed by

a steep exponential decay. If ever, a discontinuity in the

time derivative of the blood pressure function, as seen

at the end of the systole, should occur when the aortic

valves close due to a lack of output from the left ventri-

cle. The systolic duration τsys was estimated at 125ms,

which is clearly too short compared to results from in

vivo studies, and was therefore set to 300ms [20]. The

original equation for systolic pressure was replaced by

the following:

pI = di−1 +Si

(
1.8(t − ti)

τsys

)
exp

(
1− 1.8(t − ti)

τsys

)
.

(2)

Sympathetic activity The original equation for

sympathetic activity was modified to avoid discontinu-

ities in the first derivative. This leads to the following

expression:

νs =max

(
0 , νs,0−ks,bνb+ks,r

sin(πs f t +Δφs,r)+1

2

)
.

(3)

A similar problem occurs due to the subtraction of

ks,bνb. Therefore, a butterworth low-pass filter is in-

troduced, using order 3 and a passband edge frequency

of 0.15 ·2π rad
sec . The filter output is multiplied by 0.4, to

keep a reasonable level of sympathetic activity.
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Figure 1: Schematic representation of the CVS components in Model 1 and 2.

Parasympathetic activity and respiration
Respiration is only included in the parasympathetic

activity [21]. Assuming that the breathing pattern is

represented by a function r(t), ranging from -1 at total

expiration to 1 at total inspiration, a linear dependence

of parasympathetic activity on respiration is assumed.

To keep the same overall level of activation, the original

equation was changed to

νs = max

(
0 , νp,0+kp,bνb

+kp,r

(
sin(π p f t +Δφp,r)

2
+

r(t)
2

))
,

(4)

including a basic parasympathetic frequency p f .

Correction of the mean HR To accurately repro-

duce the mean HR defined by T0, the product of the

sympathetic and parasympathetic activities fs and fp
should equal 1 in the long term as part of the IPFM

input. To ensure this, the mean of fs(t) fp(t) at time t
was divided by its mean over the previous 10 sec.

3.3 Model 3: An HRV model with different
baroreceptor types

In this section, the model presented by Olufsen et al. is

described and extended. It was designed to derive ANS

activity and thus HR from measured blood pressure val-

ues during periods of orthostatic stress. Most parame-

ters, such as τS, τI , τL, kS, kI , kL, and M were derived

from animal experiments, others were estimated empir-

ically [16].

Baroceptors Olufsen et al. distinguish three types

of baroreceptors. The model is based on the rate of

change of mean arterial pressure p over time. Assum-

ing that the pressure function p(s) is continuous and

bounded, by using the integral rule of Leibniz there

holds:

d p
dt

= α
( d

dt

∫ t

−∞
p(s)e−α(t−s)ds

)
= α(p− p). (5)

Three types of baroreceptors are defined as

dni

dt
= ki

d p
dt

n(M−n)
(M/2)2

− ni

τi
i = S, I,L (6)

S stands for short, I for intermediate, and L for long

time scales. They represent the variations in threshold

for different baroreceptor types and are included in the

equations via τS, τI , and τL. The maximum firing rate

is taken into account by M, which is set to 120. For the

overall firing rate n, there holds n= nS+nI +nL+N and

nS,nI and nL give the deviation from the mean firing rate

N.

The autonomous nervous system The

parasympathetic activity Tp(n) is defined as n di-

vided by M. The sympathetic activity includes a

time-delay τd and is given as:

Ts(n) =
1−n(t − τd)/M

1+βTp(n)
. (7)
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The Heart as effector of the ANS Cardiac no-

radrenaline and acetylcholine concentrations are calcu-

lated as

dCnor

dt
=

−Cnor +Ts

τnor
,

dCach

dt
=

−Cach +Tp

τach
, (8)

and to generate an input for the IPFM, they were com-

bined with the mean HR H0 giving

dϕ
dt

= H0(1+MsCnor −MpCach). (9)

In order to create a closed loop, the previously pre-

sented model had to be further expanded.

The Arterial Windkessel A three-element wind-

kessel model was chosen to generate a pressure curve

as input for the baroreceptors. It is dependent on total

arterial compliance C, peripheral resistance R and input

impedance Rc and was chosen accoring to Westerhof et

al. [22].

In order to solve the given differential equation, a func-

tion for the flow from the aortic root q(t) was chosen

based on findings in [23] as

q(t) = exp

(
2

(
1− 1

ts

)
+

1

( 2t
ts−1 )

2 −1

)
SV
I

(10)

The systole duration in ms is calculated as ts = 540−
2.1 ·HR according to [24]. SV is the stroke volume in

milliliters eqaling n = 0.5+ 0.5
RRn−1Vre f

1000 according to

[25]. At 60bpm it was assumed to be 70ml. I equals the

integral of the exponential term in q(t) over the interval

[0; ts] [23].

Autonomic nervous system activity Two sinu-

soidal functions with frequencies fp and fs were added

to the model, giving

Tp(n) =
n(t)
M

+Cp sin(2π fp), (11)

Ts(n) =
1− n(t−τd)

M +u(t)

1+β n(t)
M

+Cs sin(2π fs). (12)

To avoid fast fluctuations in sympathetic nervous sys-

tem activity, a butterworth filter of order 3 and passband

edge frequency of 0.15 ·2π was applied to Ts(n).

IPFM and Respiration The ANS input of the

IPFM model was scaled analogously to the second

model. The respiration was included by using a vary-

ing threshold for the IPFM, as proposed by Barbi et al.

[26]. The threshold is chosen as i(t) = 1+ r(t)
20 with r(t)

oscillating between -1 and 1, depending on the breath-

ing cycle.

4 Simulation
All three simulations were implemented in Simulink

2017b and the RR-intervals were further analysed in

Matlab 2017b.

RR-interval data from 30 subjects with essential hyper-

tension was used to derive parameters for the simula-

tion. One of six different guided breathing patterns was

used for each subject. During the 10min breathing ex-

ercise, an ECG was recorded at a sampling rate of 256

Hz [27].

The 10min were split into two 5min recordings and

hence 60 different data sets were used for the simula-

tion runs of each mode. For model 2 and 3, basic fre-

quencies for the sympathetic and the parasympathetic

branch of the ANS needed to be determined. There-

fore, a Lomb-Scargle periodogram of the patients RR-

intervals was calculated. The sympathetic frequency is

chosen as the frequency with the highest power in the

interval from 0.04−0.15 Hz. The same applies for the

parasympathetic activity and the frequency band from

0.15−0.4 Hz.

For the solution of the various non-stiff differential

equations, the ode45 solver with variable step size was

used. Every simulation was performed for 1000 sec-

onds, from which only the last 300 seconds were se-

lected.

5 Results
Poincaré Plots The Poincaré plots of the first mod-

els 60 simulation runs clearly show a tendency of over-

estimation of the mean HR. This is apparent through the

shift of the whole set of points along the line of identity,

compared to the given patient data.

Another significant mismatch between given data

and simulated data lies in the general shape of the point

cloud. A typical distribution of points has a comet-like

shape, whereas the simulated data presents itself in a

more circular shape without any points in the centre of

the point cloud.
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Figure 2:Model 2: Poincaré plot of the first 5min recording
of subject number 23, with corresponding
simulation output.

For the second model, considerably better Poincaré

plots could be achieved, especially in relation to the

mean HR (Figure 2). For some cases however, the simu-

lation output resulted in an atypical, elliptically appear-

ing line. This phenomenon occurred mostly in connec-

tion with input data showing a rather large general dis-

persion of points.

The third model showed similar results concerning

the mean HR, but a tendency of overestimation of the

plots length and width was observed. For a variety of

data sets, the plot showed a lack of points in the cen-

tre of the point cloud, although far less pronounced in

comparison to the first model.

Statistical HRV Analysis Six statistical param-

eters were used for the quantification of the RR-data

[28, 19]. The mean RR- duration was analysed,

followed by SD1, RMSSD, and SDSD as indicators for

short term variability, SD2 as quantifier for long term

variability and SDNN, which represents overall HRV.

As already indicated, model 1 tends to overestimate

the RR-interval length drastically. For model 2 and 3,

a very good replication of mean RR-duration could be

reached. As shown in Figure 3, the results for the SDSD

show a similar pattern to that of the mean RR-intervals.

Again, the first model clearly overestimates the SDSD,

opposite to the second and third model, which show a

considerably better fit. When looking at the differences

it should be noted, that the second model shows a slight

underestimation, whereas the third model overestimates

the SDSD a little.

SD1 shows the same behaviour as SDSD concerning

the boxplot. Model 1 and 2 show a comparable amount

of underestimation of SD2, which quantifies slow HRV

changes, as opposed to a considerable overestimation

by model 3. Again this behaviour is also observable in

the Poincaré plots of model 3, as an overly long exten-

sion of the model data along the line of identity.

The RMSSD, which reflects high frequency compo-

nents, basically shows the same behaviour as the previ-

ously described measures of short term variability.

SDNN, which is a measure of total spectral power,

is most accurately represented by the output of the first

model, slightly underestimated by the second model

and clearly overestimated by the third.

Blood Pressure For Model 1 and 2, blood pressure

showed a highly unusual behaviour for a remarkable

number of cases. Systolic blood pressure mostly ranged

above 140 mmHg, reaching maximum values of up to

190mmHg.

This behaviour has a severe impact on the sympathetic

activity, which is mainly dependent on the blood pres-

sure function and its first derivative. Therefore, once

systolic blood pressure levels exceed 160mmHg, sym-

pathetic activity shows phases of zero activity or even

vanishes completely.

Another noteworthy result are the rapid changes in sys-

tolic, as well as diastolic blood pressure over the course

of a few successive heartbeats. The systolic blood pres-

sure varies by up to 20mmHg for both models, although

less pronounced for the first than the second model.

This is due to the impact of sympathetic nervous ac-

tivity on the cardiac noradrenaline concentration.

Another cause of blood pressure fluctuations of

about 10mmHg in both models is presented by respira-

tory activity. The changes in pressure are time-delayed

in a way, that the peak in blood pressure appears shortly

before a maximum level of inhalation is reached.

For the third model, during none of the simulation

runs, a systolic blood pressure higher than 130mmHg

was reached, and it generally showed only small fluc-

tuations (1-5mmHg) over time. For the diastolic blood

pressure, normal values were observed, with two ex-

ceptional cases of 40mmHg and 50mmHg. In contrast

to the systolic blood pressure, diastolic values showed

quick changes of up to 10mmHg over the course of only

a few heartbeats.
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Figure 3: Boxplot of SDSD, SD1, SD2, SDNN, and RMSSD of the subject data and all three models.

Another notable observation about the behaviour of the

blood pressure is its dependence on respiration. For

the third model, respiration is included via variation

of the IPFM threshold. It has an instantaneous influ-

ence on the occurrence time of the next heart beat, and

consequently on blood pressure. For the first and sec-

ond model, blood pressure variations can be observed,

but due to the fact that respiration is included into the

models ANS part, the time delay in sympathetic and

parasympathetic activity results in a time delay between

respiration and blood pressure variations.

6 Discussion

The Integral Pulse Frequency Modulation
Model The first and most obvious result was the sig-

nificant overestimation of the mean HR by the first

model. This may be due to the fact that, although IPFM

models are widely used in literature, they neglect res-

piration as an input, and their input functions are often

designed to mimic physiological processes, but are not

further mathematically analysed as stated by Meste et

al. [29]. The averaged ANS IPFM input should equal

1 over the whole simulation run, in order to correctly

recreate the mean HR. Mean HR should be additionally

considered when modeling HRV, as it correlates with

HRV [30].

The third model showed a similar problem. For the

second and third model, the introduction of a scaling

function did indeed improve the results considerably,

but this approach does not address the root of the prob-

lem.

Still, if the mean amplitude of the IPFM model in-

put is, for example, too low, and therefore upscaled, the

amplitude of the periodic input components is also in-

creased, resulting in greater fluctuations. The change

in amplitude of periodic signal parts has notable effects

on the shape of the Poincaré plot and the measures of

HRV. For the third model, the input of the IPFM was

generally underestimated. By upscaling it, fluctuations

of the incoming signal were reinforced, resulting in a

greater overall variability. Moreover, the low frequency

input signal components are dampened by this kind of

signal modification, which makes the approach unsuit-

able for use in modeling and simulation of HRV over

longer periods of time.

The Baroreceptors Seidel and Herzel state, that

it is not reasonable to put much effort into barorecep-

tor modeling [2], but if all following model equations

build on it, a more detailed approach is desirable at

this point. Although baroreceptors can be seen as pro-
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portionally and differentially reacting controllers, other

factors were ignored, such as adaption to changes in

mean pressure, saturation, and neural conduction times.

They could easily be included, as for example DeBoer

et al. showed, using a scaled arctangent function to

mimic saturation at high and low pressure levels [11].

For the third model, three different types of barore-

ceptors were presented, in order to account for the

variation in thresholds for different baroreceptor types.

They also include a maximum firing rate, which is a

necessary assumption, since the firing rate is generally

limited by the duration of the absolute refractory phase

of baroreceptor ion channels. Their dependency on

mean blood pressure over the last 1, 5, or 250 seconds

gives them an adaptability to longer phases of hyperten-

sion, clearly missing in the first model[16]. Moreover,

this modeling approach still presents an easily imple-

mentable, yet physiologically much more accurate ba-

sis for the input of the ANS, since at least two different

types of baroreceptors are known [31].

ANS Activity The first model includes the basic

characteristics of sympathetic and parasympathetic ac-

tivity. They both show an oscillating behaviour and

are modulated by baroreceptor activity, giving them a

seemingly antagonistic behaviour. The basic frequency

of both branches of the ANS was set equal to the res-

piratory frequency, which is contrary to the fact, that

respiratory changes in HR were shown to be modu-

lated mainly by parasympathetic activity [15]. The first

model also modulates sympathetic activity proportional

to the current baroreceptor activity, which is an assump-

tion incompatible to the fact, that sympathetic activity

is widely attributed to the low frequency components

of HRV [28]. The erroneous regulation of sympathetic

activity is also evident, if one considers that a maxi-

mum function had to be included into the model, in

order to prevent negative sympathetic activity values.

Another shortcoming lies in the complete absence of

autonomous ANS activity independent from modulat-

ing factors.

Therefore, two oscillators for fundamental ANS ac-

tivity, a low pass filter for sympathetic activity, and a

term for respiration only in the parasympathetic nervous

activity were included in the second model. The simu-

lation results were superior to those of the first one by

far, but still undesirable phases of zero sympathetic ac-

tivity occurred, resulting in a lack of HRV. This leads

to the conclusion, that baroreceptor activity and respi-

ratory influences should not be included directly into

sympathetic activity, if one locates sympathetic activity

in the low frequency spectrum.

For the third model, the absence of independent

ANS activity was analogously evened out by the inclu-

sion of two oscillators. Since sympathetic activity was

again directly dependent on the baroreceptor firing rate,

another low pass filter was included. This causes a re-

action to quick changes in blood pressure mainly medi-

ated via the parasympathetic nervous system, which is

consistent since this ANS part is attributed to the high

frequency components of HRV.

Respiration Respiration, as a main influence on

short term HRV, was included into the models in two

different ways: The first and second model include res-

piration in the ANS, which is comprehensible, since

changes in parasympathetic activity exist due to cen-

tral respiratory modulation [15]. A disadvantage lies

in the resulting temporal shift between inspiration and

augmentation of the HR. The third model avoids this by

varying the IPFM threshold based on the current level of

in- and exhalation, leading to an instantaneous change

of HR. It still is questionable, whether respiratory sinus

arrhythmia should be modelled via the parasympathetic

nervous system, or directly influence HR.

Blood Pressure Effective blood pressure regulation

serves as an indicator of how well the model is con-

structed, since controlling mechanisms regulate the HR

with the aim of keeping blood pressure levels within a

normal range. In Studies, systolic blood pressure was

shown to increase during phases of higher HR, whereas

diastolic blood pressure was only slightly augmented

in all age groups and for all heart rates [32]. The first

and second model show significant changes in systolic,

as well as diastolic blood pressure. Additionally, over-

estimated average blood pressure levels cause the pre-

viously mentioned phases of zero sympathetic activ-

ity. This is clearly not a desirable outcome and can

be attributed to a combination of inadequacies. Quick

changes in blood pressure during systole are normally

evened out by the windkessel effect of the aorta. Al-

though the first and second model do include a wind-

kessel time constant, it only effects the diastolic pres-

sure decrease. During systole, only the contractility

varies based on sympathetic activity. This combination

results in overly high blood pressure levels. Also, stroke

volume and its dependence on the HR was not included,
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which further increases blood pressure levels. In com-

parison to the first two models, the third one showed a

very stable mean systolic blood pressure for all patients

and all mean heart rates, whereas the diastolic pressure

showed fluctuations. The model expansion including

HR dependent stroke volume and an arterial windkessel

clearly had a stabilising effect on blood pressure. Es-

pecially the windkessel regulates blood pressure during

systole, as well as diastole, and gives a more physio-

logic shape to the pressure curve. Although the third

model behaves more realistical than the other two, cor-

rect selection of compliance and resistance is essential

for an accurate calculation of blood pressure. Further-

more, fluctuations in rapid changes in diastolic blood

pressure should be avoided generally. What is miss-

ing in the third model, is not only stroke volume, but

also contractility depending on the filling of the heart.

Varying peripheral resistance over time also presents a

possibility for further model extension.

7 Conclusion

Although lots of existing models and submodels of the

CVS include a variety of regulatory mechanisms of the

HRV, they reveal shortcomings when closer examined.

A lot of them do not address physiological processes in

detail, or are largely based on purely statistical evalua-

tions.

The first implemented model includes a variety of

regulatory mechanisms, such as baroreceptors, sym-

pathetic and parasympathetic activity, neurotransmit-

ter concentrations, and myocardial contractility, but de-

spite the many regulatory mechanisms it failed to mimic

even the mean HR of the given subject data correctly.

The second model, which resulted from enhance-

ments based on medical considerations of the first

one, showed significant improvements in model perfor-

mance when compared to subject data. However, it still

generates physiologically untenable outputs for some

cases. Phases of zero sympathetic activity caused by

poor modeling of the baroreceptors, high fluctuations

in systolic and diastolic blood pressure, and an incom-

plete arterial windkessel still provide starting points for

further model enhancements.

The third model, being a combination of physiolog-

ically well-founded models, includes a more accurate

description of the baroreceptors, and was also extended

to further enhance its performance. Nevertheless, it

overestimates short term as well as long term variabil-

ity, which may be due to an inadequate choice of input

for the IPFM model. In order to adequately recreate the

mean HR given by the subject data, the IPFM input had

to be evened out by a correction term analogously to the

one used for the second model. In summary, models of

cardiovascular regulation with an emphasis of correct

represenation of HRV do exist, but only some of them

are able to mimic reality to a satisfying degree. Mod-

eling approaches, although physiologically valid, often

put an emphasis on single aspects of the cardiovascular

system, and simultaneously neglect others, which leads

to a limited function of the whole model.

Once the existing regulatory mechanisms are accu-

rately modelled, further enhancements may include age,

gender, chemoreceptors, posture, hormonal regulation

or even parts of the central nervous system. Neverthe-

less, further research needs to find a balance between

a models richness of detail and an excessive amount of

uncertain parameters.
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