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Abstract. Bayesian networks can be used for analysis
and representation of dependencies in large data sets.
Due to their property of operating with graphs, they are
suitable for analyzing delays in rail networks. After get-
ting an overview of the theory of Bayesian networks,
this article deals with recent literature about Bayesian
networks and train delays. Furthermore, the presented
methods will be applied to data from the Austrian railway
network.

Introduction

Since public transport plays a major role in society, it

is on societies behalf to keep delays to a minimum. In

order to reach the goal of minimizing delays, it is im-

portant to understand not only the reasons of delays but

also the propagation of delays within the public trans-

port network. The availability of large data sets, pow-

erful computers and suitable mathematical tools allows

analyzing such delays in a sensible way.

1 Bayesian Network

A Bayesian network is a model represented by a di-

rected acyclic graph (DAG) G = (V,E), whereat V is

the vertex set and E is the edge set. Every vertex rep-

resents a random variable. There exists an edge e ∈ E
between two vertices v,w ∈ V , if and only if there is a

probabilistic dependency between the two random vari-

ables represented by v and w ([1]).

Depending on the model, the random variable (i.e.

vertex) can take on different types of values ([2], [3]),

e.g. unordered values (e.g. blue, green, yellow), ordered

values (e.g. low, medium, high) or continuous values

(R). Every random variable also has its probability dis-

tribution, which needs to be added to the graphical rep-

resentation. If the random variables take on continuous

values (e.g. when dealing with continuous data), we of-

ten consider multivariate normal variables, i.e. the ran-

dom variables are normally distributed and linked by

linear constraints. An example of this case is illustrated

in Figure 1.

GramatneusiedlHimberg

Intercept: 3

Standard deviation: 2

Intercept: 5

Standard deviation: 1

0.3

Figure 1: Considering that a train at station Himberg is 10
minutes late, then it is expected to be 6 minutes
late (3+0.3 ·10 = 6) at station Gramatneusiedl, with
a standard deviation of 2 minutes.

When using Bayesian networks for modelling real-

world problems, we often just have data describing

the values of our random variables, but no information

about the graph structure, i.e. the edges/dependencies

between the vertices/random variables. In this case, we

want to derive the graph structure from the values of the

random variables. The Max-Min Hill-Climbing method

(MMHC) enables this derivation and will be used in

Section 2 and Section 3. A detailed introduction to this

algorithm can be found in [4].
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2 Analyzing the Long Island Rail
Road System

In [1], Ulak et al. investigate network-wide pattern of

rail transit delays in the Long Island Rail Road System,

i.e. a railway system in New York that has a length of

620 miles and consists of a total of 11 rail lines. In

Section 3, the methods used in [1] will be modified and

used for data of the Austrian railway system. There-

fore, Section 2 recapitulates the methods and ideas of

[1] without going too deep into detail or presenting the

results.

In order to build a Bayesian Network as described

in Section 1, every station is considered as a random

variable. It takes on the average delay at this station

within a certain time interval. There should exist an

edge between two vertices (i.e. between two stations)

if and only if there is a dependence between those two

vertices (i.e. if a delay at one station affects the occur-

rence of a delay at the other station).

It is possible to classify each train as either east-

bound or westbound. When analyzing the delay propa-

gation, i.e. when creating the Bayesian Network, either

all eastbound or all westbound trains are considered, but

not both east- and westbound trains.

By analyzing the data of an app used by the pas-

sengers, the authors receive the delay of every train at

every station (with a few exceptions). The observation

period is divided into 1-hour intervals. For every station

the average delay per train within the examined hour is

calculated. A data sample consists of the average de-

lay time at every station within one hour. By using the

Max-Min Hill-Climbing method (MMHC) and the max-

imum likelihood method, the graph structure and the

corresponding parameters are compiled from the inde-

pendent data samples. The R-package bnlearn was

used for this task. Detailed documentation about this

package can be found in [3].

In order to receive an expressive score for every sta-

tions role in delay propagation, two metrics are intro-

duced. The Inducer score of station s indicates how

much a delay at station s influences the delays at all

the other stations. The Susceptible score of station s in-

dicates how much the delay at station s is influenced by

the delays at all the other stations. Similar scores will

be introduced in Section 3 in a more precise way.

3 Analyzing the Austrian
Railway System

In this section we want to modify the methods of [1] and

apply them to data of the Austrian railway network. For

this purpose, delay data provided by the Austrian na-

tional railway company Österreichische Bundesbahnen
(ÖBB) is used. It not only contains information about

the delay at every train station, but at every operation

control point, a so-called "Betriebsstelle". These are

specific points within the network. Every train station

is also a operation control point. In the following, the

word "station" will be used for operation control point.

3.1 Differences to the Long Island Rail Road
System

The different topology of the railway network and the

different timetables cause different problems that need

to be faced:

• In [1], the length of every time interval is chosen to

be 1 hour. Considering longer time intervals ”flat-

tens” the delays, since temporal peaks are divided

by a higher number of trains. So shorter time inter-

vals provide better ”resolution” of the occurrence

of delays.

On the other hand, it takes some time to propa-

gate the delay within the network. In Austria, there

are longer distances between stops and therefore

it takes longer to propagate delays. Choosing the

length of the time interval to be 1 hour, most trains

will ”occur” in more than one time interval. Since

the different data sets (i.e. delays within different

time intervals) are meant to be independent, this

causes some problems.

• There are stations that are not passed by any train

in certain time intervals. Calculating the average

delay in that period would provoke dividing by

zero. This problem can be solved by considering

the totaled delay instead of the average delay.

However, this still might yield meaningful results,

since the delays at a station that is approached by

a lot of trains, each having just a little delay, might

be more relevant than the delay at a station that is

only approached by a single train, having a longer

delay.

• The Long Island Rail Road System is quite

crowded, i.e. if a train is delayed, it is very likely

that this affects other trains. In Austria, there are
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also parts where the temporal distance between

different trains is much longer. In this case, delays

will still propagate since a delayed train probably

will still be delayed at its next stop, but it does not

directly affect the delays of other trains.

• By considering only the eastbound or westbound

trains, a cycle-free network was obtained in [1]. In

Austria, a classification in eastbound or westbound

is not possible (e.g. there are also trains going from

north to south and vice versa). However, consider-

ing all the trains will lead to cycles within the net-

work. This conflicts with the attempt of modelling

the network as a directed acyclic graph. A strategy

to resolve this problem is to delimit the number of

trains considered.

• In the Long Island Rail Road System, there are

just 124 stops, so it is a relatively small network.

Considering all trains in Austria leads to a gigantic

model (in terms of vertex numbers, edge numbers

and parameters). But when examining only a se-

lection of trains (and its corresponding stations),

there are still influences from the non-considered

trains. So there is "external" disturbing.

• There are also trains not operated by ÖBB using

the same tracks . In the provided data there is only

information about the trains operated by ÖBB. So

even if no data selection is done, there will be still

disturbances by other, not observed trains.

3.2 Methodology
Considering Subsection 3.1, the following restriction

will be made:

• Only trains going from Vienna (station Haupt-
bahnhof or Westbahnhof ) to St. Pölten and vice

versa and the corresponding operational points be-

tween those two stations will be observed. In

this case each train can be classified in eastbound

or westbound and we obtain cycle-free networks.

This section is also quite crowded, so there will be

interactions between different trains.

• Since the distance between Vienna and St. Pölten

is relatively short, we can set the length of the time

intervals to 1 hour, without dealing too much with

the problems mentioned in Subsection 3.1.

• We will not consider the average delay but the to-

taled delay of every time interval at each station.

Considering only the stations from Vienna to St.

Pölten and vice versa is of course a very strong restric-

tion but it enables us receiving suitable results. The

considered stations (”Betriebsstellen”) are sketched in

Figure 2. In Vienna, there are two branches - one

branch going to Wien Westbahnhof and one branch

going to Wien Hauptbahnhof. Between the stations

Knoten Hadersdorf and Knoten Wagram there are also

two different routes: In the north (via Tullnerfeld) there

is the so-called Neue Westbahn, in the south (via Press-
baum) there is the Alte Westbahn.

Figure 2: Considered stations (operation control points)
between Vienna and St. Pölten

3.3 Network structure

Similar to [1], we use the R-package bnlearn (and

the functions hc and bn.fit) to obtain the network

structure. It was also considered to use the Python-

packages Pomegranate and PyMC3 for the same

task, but those packages can only deal with random

variables that take on unordered values . The results

can be seen in Figure 3 and Figure 4. In these figures,

the directions of the dependencies were not indicated.

When searching for the graph structure, we expect

a graph that resembles the geographical topology of the

stations, e.g. it would not make sense if a station close

to St. Pölten directly affects a station close to Vienna.

The topological sorting never coincides with the actual

geographical order of the stations. However, we did ex-

pect such a behavior, since phenomena like backward

propagation (i.e. dependencies going in the opposite di-

rection) and others can cause a mismatch with the geo-

graphical order of the stations. Furthermore, some sta-

tions are very close and therefore have almost the same

delays. In this case, the order of those stations in the

obtained network is almost arbitrary.

When observing the plots visually, we detect that

there are also connections between stations that are far

apart. There are even connections between stations

from the Alte Westbahn and Neue Westbahn, whereat

these kind of connections are relatively rare.
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Figure 3: Network connections (eastbound). X-axis and
y-axis indicate latitude and longitude.

Figure 4: Network connections (westbound). X-axis and
y-axis indicate latitude and longitude.

3.4 Metrics

The metrics are inspired by the metrics used in [1], but

slightly modified.

The Inducer score indicates how much a delay at a

station s influences the delays at all the other stations.

Therefor, the delay at the examined station s is set to the

median delay of this station (based on the data) and the

delays at all the other stations are set to 0. Given this

initial condition, the expected delay at every other sta-

tion is estimated by the Bayesian network. Those values

are averaged over all stations. The score of station s can

be written as

ScoreI(s) =
1

n−1

n

∑
i=1
i�=s

E(Xi|Xs = xs,X\(Xs ∪Xi) = 0)

where n is the number of random variables, xs
is the median (observed) delay at station s and X =
(Xi)i∈{1,...,n} is the ensemble of all random variables.

The Susceptible score indicates how much the delay

at a station s is influenced by the delays at all the other

stations. Therefor, the delay at one station i (with i �= s)

is set to its median delay (based on the data) and the

delays at all the other stations (including the examined

station s) are set to 0. Given this initial condition, the

expected delay at the examined station is estimated by

the Bayesian network. This procedure is repeated and

averaged over all stations i �= s. Using the same notation

as above, the score of station s can be written as

ScoreS(s) =
1

n−1

n

∑
i=1
i�=s

E(Xs|Xi = xi,X\(Xi ∪Xs) = 0)

When considering the metrics, we observe that al-

most all stations with the highest (top 4) scores are ei-

ther stations that are passed by all trains or stations of

the Alte Westbahn. Only the station Tfo (close to Tull-

nerfeld) has the highest inducer score (westbound), al-

though it is located at the Neue Westbahn. So the Neue
Westbahn acts well in reducing delay propagation. Go-

ing in the westbound direction, two stations at the very

beginning of the route reach high susceptible scores

(Wien Hauptbahnhof and Wien Westbahnhof Frachten-
bahnhof ). Those stations are very susceptible to delays

at other stations (although almost all stations are passed

after those two stations). We also observe that some

stations reach negative susceptible scores. According

to our model, this means that delays at certain other sta-

tions reduce the delay at this observed station.

3.5 Conclusion

When applying the methods introduced in [1] to the

Austrian railway system, we need to make restrictions.

In order to obtain the inevitable property of an acyclic

directed graph, we can only consider an area where ev-

ery train can be classified into a certain (cycle-free) di-

rection. R yields a network structure that seems partly

reasonable. There are also connections between sta-

tions that are far apart and connections between Alte
Westbahn and Neue Westbahn. However, this does not

necessarily need to conflict with the real behaviour.

The inducer score and susceptible score indicate

which stations play a big role in delay propagation.

It seems reasonable that the Neue Westbahn acts well

w.r.t. reducing delay propagation, since this section was

constructed quite recently. The fact that stations at

the beginning of the route have quite high susceptible

scores fits to the idea of back-propagation. However,

there are also stations with negative susceptible scores.

This does not seem to be reasonable.
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