
S N E T E C H N I C A L N O T E

SNE 33(3) – 9/2023 101

Integration of Reinforcement Learning and
Discrete Event Simulation

Using the Concept of Experimental Frame
Thorsten Pawletta, Jan Bartelt

Research Group Computational Engineering and Automation (CEA), Wismar University of Applied Sciences,
Philipp-Müller-Str. 14, 23966 Wismar, Germany; {thorsten.pawletta, jan.bartelt}@hs-wismar.de

Abstract. Reinforcement Learning (RL) is an optimization
method from the field of Machine Learning. It is charac-
terized by two interacting entities referred to as the agent
and the environment. The goal of RL is to learn how an
agent should act to achieve a maximum cumulative re-
ward in the long-term. A Discrete Event Simulation Model
(DESM) maps the temporal behavior of a dynamic system.
The execution of a DESM is done via a simulator.
The concept of an Experimental Frame (EF) defines the
general structure used to separate the DESM into the dy-
namic system, called the Model Under Study (MUS), and
its application context. This supports the diverse use of a
MUS in different experimental contexts. This paper ex-
plores the generalized integration of discrete event simu-
lation and RL using the concept of EF. The introduced ap-
proach is illustrated by a case study that has been imple-
mented using MATLAB/Simulink and the SimEvents
blockset.

Introduction

In modeling and simulation (M&S) theory [19], a model
describes the dynamic behavior of a real or virtual sys-
tem. A discrete event model is characterized by a finite
number of states over a continuous time base. The exe-
cution of the model, i.e. the calculation of trajectories, is
performed using a simulator. In the versatile use of a
model, it should be developed independently from the
context of use. The reference to a concrete experiment
can be mapped by way of an Experimental Frame (EF).

An EF specifies the conditions under which a system
is observed or a model experimented with [19, 17]. The
model used is called the Model under Study (MUS). De-
pending on the experiments to be performed using a
MUS, the corresponding EFs must be specified. Depend-
ing on the EF, the same model can be used in a parameter
study, sensitivity analysis, optimization, etc. A context-
specific EF and the MUS form the simulation model
(SM) to be executed by the simulator. The concept of EF
can be applied to all dynamic system models and their
simulators but this paper focuses on discrete event simu-
lation models (DESM).

The execution of a goal-directed experiment using a
DESM and a simulator requires an Experiment Control
(EC) [20]. The EC defines the goals and constraints of an
experiment and structures the experiment process. In-
spired by Breitenecker’s [1] approach to structuring sim-
ulation-based experiments (SBE), Pawletta et al. [12] and
Schmidt [13] concretized the concept of EC by introduc-
ing a Simulation Method (SimMeth) and Experiment
Method (ExpMeth). The SimMeth controls the execution
of the simulation runs and ExpMeth consists of arbitrary
numerical methods. ExpMeth are used for the pre- and
post-processing or to control the SimMeth, such as in
simulation-based optimization experiments [3, 13].

Reinforcement Learning (RL) [15] in combination
with a dynamic system simulation can be considered a
specific SBE. According to Gosavi [8], RL is a simula-
tion-based optimization of Markov Decision Processes
(MDPs). In terms of RL, the MDP is modeled as an en-
vironment and the agent acts as a controller for the MDP.
The agent influences the environment by actions, while the
environment performs state transitions and responds with
the new states and reward values for each transition. The
optimization goal is to learn how the agent should act to
achieve a maximum cumulative reward in the long-term.

SNE 33(3), 2023, 101-109, DOI: 10.11128/sne.33.tn.10651
Received (EUROSIM 2023): 2023-02-01; Acc.Conf.: 2023-03-30
Received SNE: 2023-08-15; Accepted: 2023-08-31
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Pawletta & Bartelt Reinforcement Learning and Discrete Event Simulation in Experimental Frame

102 SNE 33(3) – 9/2023

T N
In contrast to a discrete event dynamic system, an

MDP is a discrete time process where the time base is
only used for the sequential ordering of states. In addi-
tion, not all states of the MUS are usually of interest to
the RL. Accordingly, the states of the MUS must be con-
verted into MDP-compliant states. Due to the methodo-
logical differences, the combination of the two methods,
RL and discrete event simulation, often lead in practice
to implementations that are difficult to maintain and
MUS that are not generally usable.

After discussing related work in section one, section
two presents a general concept of SBE using the EF, and
the basics of RL. In section three, an EF-based approach
to integrate the RL method and DESM for performing
SBE is presented. In addition, the approach is demon-
strated using a case study.

1 Related Work
The combination of discrete event simulation and RL is
part of numerous works in the field of M&S. The works
can be roughly divided into four categories: (i) mathe-
matically-oriented basics, (ii) application-specific solu-
tions, (iii) extensions of the simulation environments, and
(iv) generic M&S oriented approaches. The first category
focuses on the mathematical principles for combining the
two methods without addressing software implementa-
tions such as in the work of Gosavi [8].

Work of the second category often uses simplified
models that are mapped as RL-compliant MDP environ-
ments [14, 10]. The models are not a general-purpose
MUS. Other works use their own or proprietary simula-
tion environments to represent the MUS and implement
the RL-specific part in Python, often using AI libraries
such as TensorFlow [6, 5]. In the case of Feldkamp et al.
[6], the coupling is done using a client-server approach
with the RL part acting as the server and the simulation
environment as the client. The necessary state transfor-
mations for the coupling of the two methods are imple-
mented on the RL side in Python.

The coupling of different software systems requires
advanced programming skills. To simplify the applica-
tion of RL techniques, the manufacturers of simulation
environments have started to integrate RL-specific ele-
ments into their software systems such as described in the
work Mahdavi and Tyler [11], Greasley [9], and The
MathWorks [16] (third category).

The basic principle is to provide configurable RL
agent objects that have a typical RL input/output inter-
face (action as output, observation and reward as inputs).
They can be used as parts to build a simulation model. In
addition, RL-specific methods are provided that support,
for example, the training of an agent. These supplements
facilitate the integration of the two methods for users.
Nevertheless, the method integration remains a chal-
lenge. Aspects such as a clear and maintainable structur-
ing of the simulation model in a multi-purpose MUS, the
reward calculation, the conversion of MUS system states
or outputs into RL observations and vice versa RL ac-
tions into MUS inputs etc. have to be solved by the user.

Work of the fourth category deal with approaches to
solving the challenges outlined above. Capocchi and San-
tucci [2] describe a structuring approach for integrating
RL and DESM based on the Discrete Event System Spec-
ification (DEVS) [19]. They show the specification of
agents with DEVS and how DEVS-based agents can
communicate with an environment specified in DEVS.
The focus is on the specification of agents. Choo et al. [4]
analyzed the necessary transformations in the communi-
cation between an RL agent and an environment imple-
mented as a DESM. Both agent and environment form
the DESM. To structure the communication between
both parts of the DESM, they introduce specific compo-
nents called a decoder and encoder.

On the basis of Choo et al. [4], the concept of simula-
tion-based experiments in the work of Pawletta et al. [12]
and Schmidt [13], and the concept of EF, in the follow-
ing, refers to a more advanced approach for the integra-
tion of RL and discrete event simulation is developed.

2 Basics of SBE, RL and EF

2.1 SBE and Concept of Experimental Frame
Schmidt [13] divides simulation-based experiments
(SBEs) into three classes. In the following, only the first
two classes are considered. The execution of one or more
simulation runs by a SimMeth constitutes a simple SBE
if the SimMeth is invoked directly by the user or an EC.
The SimMeth sets the input values for the DESM, the ex-
ecution parameters for the simulator, and controls the
simulation runs. As previously mentioned, the EC speci-
fies the experiment goals and experiment process. Be-
sides the SimMeth, the EC can invoke further methods
for pre- and post-processing.

Pawletta & Bartelt Reinforcement Learning and Discrete Event Simulation in Experimental Frame

SNE 33(3) – 9/2023 103

T N

Figure 1: Basic structure of a complex SBE.

In a complex SBE, the SimMeth is controlled by an
ExpMeth, for example, by a numerical optimization
method. Figure 1 shows the basic structure of a complex
SBE. Both the SimMeth and ExpMeth define the process
parameters (PExM, PSnM).

An SBE uses a DESM in a specific context. It defines
certain experimental goals, conditions, and parameters.
The concept of the EF separates the MUS from a specific
context of use to improve the reusability of the MUS.
Formally, Zeigler [18] defines the function of an EF us-
ing a 7-tuple.

EF = < T, I, C, O, I, C, SU >

Here T represents the time base, I and O the set of input
and output variables of the MUS (equivalent to IMUS and
OMUS in Figure 1), C the set of run control variables, I
the set of admissible input segments, C the set of admis-
sible control segments, and SU the set of summary map-
pings.

Set I refers to the input variables of the MUS and to
the input/output relationships in the EF. Set C defines
the experimental constraints which is a subset of C×T.

The experiment objectives are mapped to the varia-
bles, which are called interest variables. The set SU de-
fines the determination of the interest variables based on
the MUS output segments. The interest variables are the
typical output variables of the EF (OEF).

The implementation of an EF is done using three
types of component, called generator (Gen), acceptor
(Acc) and transducer (Trans) [18, 19], as illustrated in
Figure 2.

Figure 2: Basic structure of a DESM with MUS and EF.

An EF does not necessarily have to contain
all three components and the coupling
relationships are not fixed.

Gen initializes the configurable parameters of the MUS
and calculates the input segments for the MUS which can
also be inputs of the Trans or Acc.

The Acc defines the admissible control segments and
monitors their compliance. The output of the Acc is run
control information. The Trans calculates the SU.

2.2 Reinforcement Learning
According to Sutton and Barto [15], RL focuses on the
sequential decision-making by an agent that interacts
with a real or virtual environment. The agent is trained
by its interactions with the environment. The goal of RL
is to learn a behavioral strategy : for the agent
that assigns an action to each state of the
environment. Thus, the agent can act as a controller for
the environment. Using RL, a distinction is made be-
tween the training and deployment of an agent, although
the agent can continue learning during deployment. The
basic RL framework is shown in Figure 3.

Figure 3: Basic RL framework.

In model-free RL, the agent only knows the allowed ac-
tion set at the start of training. The states of the
environment are unknown to the agent.

When an action t takes effect, the environment
determines its next state t+1 as well as a reward value rt+1
using a state transition model TM: S x A S and reward
model RM: S x A R.

The next state and the reward value are sent back to
the agent. The index t marks a sequence of states in the
sense of a MDP.

Pawletta & Bartelt Reinforcement Learning and Discrete Event Simulation in Experimental Frame

104 SNE 33(3) – 9/2023

T N
Through iterative interactions with the environment,

the agent obtains information about possible states of the
environment and the benefits of actions, gradually im-
proving its behavioral strategy . The goal of learning is
to maximize the sum of the rewards until a goal is
reached.

A variety of different learning strategies have been
developed for RL agents such as Q-learning (QL), Deep
Q Networks (DQN) etc.

We briefly consider Q-learning that uses formula (1)
to learn a strategy using a table function called the Q-
matrix. A matrix element , represents the esti-
mated benefit of an action when it is performed in the
state of the environment. The updated , value
of the current state/action tuple , is calculated from
the previous , value, the currently received re-
ward , and the maximum Q-value (max ,)

of all possible actions in the currently received next state
. The variables and are process parameters,

called hyperparameters.

max , , 1

The training takes place in episodes. Episodes are inde-
pendent of each other. Each episode starts in an initial
state of the environment and ends when a target state

 or abort state is reached. At the beginning
of the training, the agent selects an action ran-
domly. This is called exploration. As the learning process
progresses, the agent increasingly uses the knowledge it
has acquired to select an action which is called exploita-
tion. The ratio of exploration to exploitation is adjusted
over the course of the training. After the completion of a
defined number of training episodes, the behavioral strat-
egy is derived from the training data.

3 Integration of Reinforcement
Learning and Discrete Event
Simulations

3.1 Experimental Frame for Reinforcement
Learning in the Training Phase

The basic structure of a DESM with an EF for RL in the
training phase is shown in Figure 4. Although the approach
is not limited to DESM, we will only focus on it.

Figure 4: Basic structure of a DESM with MUS and EF

 for the training phase of a RL experiment.

The DESM consists of the three EF-components Gen,
Trans, and Acc as well as the MUS. IEF and OEF represent
the input/output interface of the DESM. The variables
and t represent different time bases where is the contin-
uous time base of the dynamic MUS and t the discrete
time base for ordering the sequential states of the RL
method.

The input variables IEF are initialized by the EC or
SimMeth (see Fig 1) at the simulation start time 0. The
SimMeth executes single or multiple simulation runs.

Each simulation run corresponds to one episode of the
RL method. The results of an episode get back via OEF at
the end of an episode (eoe).

The Gen component is composed of three subsys-
tems. Gen.GMUS is a classical generator that initializes the
parameters of the MUS at the beginning of an episode (0)
and calculates input segments I for the MUS inputs
IMUS() over the course of an episode.

The RL agent is also mapped as a subsystem of the
Gen (Gen.Agent) because the generated actions at= (st)
are inputs of the MUS. The agent's hyperparameters are
initialized at the beginning of an episode using the input
interface IEF(0). The typical initialization parameters of
component Gen.Agent are action set A, exploration rate
and, in Q-learning, the current configuration of the Q-
matrix.

Pawletta & Bartelt Reinforcement Learning and Discrete Event Simulation in Experimental Frame

SNE 33(3) – 9/2023 105

T N
Action at must often be transformed into MUS com-

patible inputs i() IMUS(). For this data transformation,
the encoder approach introduced by Choo et al. [4] is
used. The subcomponent Gen.Encoder defines an appli-
cation-specific transformation i()=h(at). A typical ex-
ample of such a data transformation is the generation of
multiple input segments for the MUS based on a single
action value. In addition to the inputs’ new state st+1 and
the reward value rt+1 of the agent, a third input isDonet+1
is defined.

The isDone information is a Boolean value that sig-
nals the end or cancellation of an episode to the agent. At
the end of an episode(eoe), the agent creates summary
mapping SUAgent(eoe) that contains values such as the
number of steps in the episode, the total reward of an ep-
isode, or the strategy learned so far (e.g. the Q-matrix).
The SUAgent(eoe) is passed to the Trans component to cre-
ate an overall summary mapping of the episode.

The Trans component is also composed of three sub-
systems. Trans.Decoder is a data transformation compo-
nent. First, it defines the calculation of the interest values
(O’MUS(t+1)) from the current outputs of the MUS
(OMUS()) related to the time base of the RL, i.e.

 O’MUS(t+1)=f(OMUS())
An example of such a transformation would be the calcu-
lation of the maximum queue length based on the previ-
ous queue occupancy. Second, it defines the transfor-
mation of the interest values O’MUS(t+1) to a state st+1 in
the RL space, that is

 st+1=g(O’MUS(t+1)).
Choo et al. [4] characterized this transformation form as

(i) State Exhaustiveness and
(ii) State Mutual Exclusiveness.

Here, (i) means that all interest values of the MUS are
mapped into one state for the RL and (ii) that for each
particular interest value of the MUS, there is only one
corresponding state in the RL space.

The RM according to Section 2.2 is mapped in the
component Trans.Rewardmodel because the reward
value is an interest value based on the output variables of
the MUS. The reward value characterizes a state tran-si-
tion st st+1 in the RL space and is calculated by

 rt+1=RM(st, at) or rt+1=RM(st, st+1).
Defining the RM is sometimes a difficult problem. Our
own experiments showed that the reward calculation can
often be defined more efficiently based on the O’MUS(t+1)
values, i.e.

rt+1=RM(O’MUS(t+1), at), or only rt+1=RM(O’MUS(t+1)).

The third subcomponent Trans.SUmapping imple-
ments the overall SU of an episode and passes it at the
end of an episode to the EF output OEF. In addition to the
summary mapping of the agent (SUAgent), the overall SU
may also include the trajectories of the MUS outputs, a
cumulative reward record etc.

In accordance with the concept of the EF in Section
2.1, the Acc component checks the compliance with the
restrictions and termination conditions for the episode
based on defined run control information.

The run control variables can be initialized at the start
of an episode via the EF input IEF(0). Typical run condi-
tions to be monitored include (i) the simulation interval
[0, final] of the MUS and thus the maximum duration of
an episode and (ii) the detection of illegal system states
or the reaching of a target state based on the O’MUS(t+1) or
RL-related st+1 values.

Accordingly, the Acc checks the newly calculated
states st+1 of the RL space as well as the reward values
rt+1 before sending them to the Gen.Agent component.
Furthermore, the Acc sets the Boolean isDone value
which signals the continuation or the end of an episode
according to the Gen.Agent.

3.2 Reinforcement Learning as a Simulation-
based Experiment

According to the classification of SBE in Section 2.1, the
RL is a complex SBE and has the general structure shown
in Figure 1.
The goal of the experiment is

(i) to learn the best possible behavioral strategy
 of an agent,
(ii) to extract the best strategy from the training
 data, and
(iii) to deploy the strategy.

When deploying, we have to distinguish whether a strat-
egy is used with or without the further learning of the
agent. The EC has to define these experimental steps. The
steps involved in training and deploying the strategy re-
quire an ExpMeth that controls a SimMeth.
The ExpMeth training contains the following basic steps:
(1) Set the RL process parameters PExM, such as the

learning rate, exploration rate, maximum number of
episodes, Q-matrix etc.

(2) Set the simulation execution parameters PSnM for the
SimMeth, such as the simulator to be used, the
simulation time interval etc.

Pawletta & Bartelt Reinforcement Learning and Discrete Event Simulation in Experimental Frame

106 SNE 33(3) – 9/2023

T N
(3) Set the DESM parameters for the EF components

and the MUS and prepare the DESM for executing
using a SimMeth.

(4) Initialize the statistical variables, such as those used
to record the total reward per episode etc,

(5) Compute the defined number of episodes, i.e. call the
SimMeth into a loop to execute the DESM, update
the statistical variables after each episode, and check
whether to abort the training or continue with
another episode.

(6) Determine and save the best policy , and plot
essential learning results.

Figure 5: Basic structure of a DESM with MUS and EF for

an experiment deployment without training.

An ExpMeth deployment_with_training has to imple-
ment nearly the same steps as the method training de-
scribed before. The DESM with MUS and EF corre-
sponds to the structure in Figure 4.
In contrast, the procedure and EF for an experimental
step deployment_without_training is simplified. No ex-
plicit ExpMeth is required.

In the EC, the experiment parameters are defined and
SimMeth is called on directly according to the number of
simulation runs to be executed. Figure 5 shows the re-
duced structure of the DESM.

3.3 Case Study

The presented approach for integrating dynamic system
simulations and RL was investigated on the basis of var-
ious case studies using MATLAB/Simulink and Sim-
Events.
Since the MathWorks' RL toolbox (release R2022a) sup-
ports integration with DESM – implemented using the
SimEvents blockset – only via workarounds, we used a
self-programmed Q-learning agent. In the following, we
discuss some basic aspects of a case study without going
into implementation details. The full implement-tation is
available on Github [7].

The MUS is a simple server line consisting of an en-
tity generator, a convertible operating unit, and two
downstream servers connected in parallel with separate
input queues as shown in Figure 6.

The operating unit can process two types of entity
(jobType=1|2). A separate processing time can be de-
fined for each entity type (procT1, procT2). A retooling
time (retoolingT) is necessary when the entity type is
changed in the operation unit. The calculation of the en-
tity type and retooling time dependent processing time is
done in the simulation runtime using two Simulink func-
tions (not shown in Figure 6).

After processing, branching into one of the two FiFo
queues of the downstream servers takes place depending
on the entity type. The downstream servers have different
processing times (saleT1, saleT2).

The definition of the different time values is deter-
mined by a value vector param=[procT1, procT2, retool-
ingT, saleT1, saleT2] at input port3 at the simulation start
time 0. Entities are generated via input events (msgGen-
Job) at input port1. The entity type (jobType) to be gen-
erated follows on from the value at input port2.

After an entity has been processed in the operating
unit, the MUS generates an output event (y_msgFinish)
at output port1. Furthermore, the current tool setting
(sSetting) of the operating unit, the current queue lengths
(y_#jobsQ1, y_#jobsQ2), and the number of completed
entities on the downstream servers (y_#jobs1sold,
y_#jobs2sold) are output as data from port2 to port6.

Hence, input set IMUS and output set OMUS are defined by:
 IMUS = {msgGenJob(), type(), param(0)}
 OMUS = {y_msgFinish(), y_sSetting(), y_#jobsQ1(),
 y_#jobsQ2(), y_#jobs1sold (), y_#jobs2sold()}

Pawletta & Bartelt Reinforcement Learning and Discrete Event Simulation in Experimental Frame

SNE 33(3) – 9/2023 107

T N
Obviously, the MUS models the dynamic system be-

havior independent of a concrete experiment. The goal of
the RL experiment is to learn the best possible injection
strategy of the two entity types into the MUS so then the
queues have the most balanced stock of both types avail-
able for the downstream servers.

After training is completed, the best strategy :
should be extracted from the training data so then, subse-
quently, the agent can act as a controller of the MUS.

The EC is implemented as a MATLAB script. It de-
fines the parameter sets PExM and PSnM, such as:
(1) action set={1, 2}, coding the two entity types
(2) learning rate =0.8
(3) sim. time interval=[0=0, final=480] per episode
(4) The number of episodes=20000, etc.
and calls the ExpMeth training. This calls the SimMeth
into a loop to execute the DESM for one episode.

Figure 6: Structure of the MUS in SimEvents.

The MATLAB built-in function sim is used as SimMeth.
The data transfer between the different methods and the
DESM is mainly done via data workspaces.

Figure 7 shows the top-level structure of the DESM
for the training phase. It contains all components accord-
ing to the general approach shown in Figure 4. The MUS
named Prodline provides the input-output interface de-
scribed above with IMUS() and OMUS(). The IEF and OEF
of the EF are not visible on the top-level structure of the
DESM.

This interface is realized via workspace variables.
The encapsulation of the Gen and Trans subcomponents
has been omitted. Parameters is a GMUS. It generates the
constant input segments for the MUS input vector param
for initializing the MUS parameters. The initialization of
parameters for the Agent, such as the Q-matrix, and for
the Acc at the beginning of each episode is encoded di-
rectly in these components. Analogously, the compo-
nents Agent and SU.Mapping output the OEF at the end of
an episode.

At simulation start time 0, an episode is started by the
Agent sending an event msgGenJob and setting an action
at={1 | 2} at the action port. In this case, the outputs of
the Agent are compatible with the inputs of the MUS in
value and timestamp with respect to the global simulation
clock. Hence, the Agent’s outputs are only forwarded by
the Encoder to the MUS ProdLine that generates a new
entity with jobType=action value.

Figure 7: Top-level structure of the DESM with MUS

(named ProdLine) and EF for the training phase
of an RL experiment.

When an entity has completed on the operation unit and
been forwarded to one of the two queues, an output event
y_msgFinish() is sent to activate the Decoder and the
output data of the MUS is updated. Study-specific output
data() is passed to the SU_Mapping for trajectory re-
cording.

The Decoder selects the information relevant to the
RL from the MUS output data() and calculates the new
state st+1 of the RL space (output port sysState4Agent).
To limit the RL space, the state set of the two queues is
limited to a maximum length (qlengthmax) to be consid-
ered (2), (3).

Pawletta & Bartelt Reinforcement Learning and Discrete Event Simulation in Experimental Frame

108 SNE 33(3) – 9/2023

T N
The new state st+1 is calculated based on the current

tool setting (sSetting) of the operating unit and the two
limited queue lengths (4).

1 = max(# ,) (2)

2 = max(# ,) (3)

 = (1) (+ 1) +
 + 1 (+ 1) + 2 + 1 (4)

An experiment, with sSetting={1,2} and qlengthmax=30,
results in set of RL states S={1,2,3,…,1921,1922}.

After decoding, the reward calculation is activated by
an event (msgFinish). Contrary to the general approach,
the reward is not calculated using the RL-related state

 but on the basis of MUS-related variables O’MUS(t+1).
In terms of content, both approaches are identical but the
second one resulted in a much better structured reward
computation (5).

=

100 1 10 2 10
2 1 10 2 < 10
1 1 < 10 2 10

2 1
100

(5)

After the reward calculation, the Acceptor is activated by
an event (msgFinish). No constraints are defined for st+1
and rt+1, so they are only passed to the Agent (rIn to rOut
and sIn to sOut).

The Acceptor defines only a control segment for the
simulation time interval [0, final], which defines the
length of an episode. Moreover, restrictions can be de-
fined depending on the queue lengths, for example, thus
the premature termination of an episode. At the termina-
tion of an episode, the Acceptor schedules an internal
event with an infinitesimal time advance. The time delay
is necessary for data updates in the Agent and SU_Map-
ping at the end of an episode.

The Acceptor activates the Agent via an event (msgFin-
ish) and signals using the Boolean variable isDone whether
the end of an episode has been reached or not.

The Agent executes its learning rules and, depending
on the isDone value, calculates a new action value or per-
forms a final data update.

When training the Q-learning agent, the total reward,
i.e. the sum of the rewards of an episode, converged on
its final value after about 5000 episodes.

The time trajectories of the queue lengths computed
using the learned policy : shown in Figure 8
prove that the agent can act as a controller of the MUS.

Figure 8: Time trajectories of the queue lengths com-
puted using the learned policy.

4 Conclusions
The integration of dynamic system simulation and RL
methods has a high application potential for both M&S
and AI applications.

On the basis of the concept of EF and the general
structure of complex SBE, it has been shown how a clear
methodological separation can be made so then the dy-
namic system models, simulation methods, simulators
and AI methods can be developed independently and re-
used in different contexts. The methodological consider-
ations have been practically underpinned using a case
study.

In the next steps, the methodological approach will be
formalized using the Discrete Event System Specifica-
tion (DEVS). Furthermore, the specification and automa-
tion of simulation-based RL experiments based on an ex-
tended System Entity Structure and Model Base
(SES/MB) framework will be investigated.

Pawletta & Bartelt Reinforcement Learning and Discrete Event Simulation in Experimental Frame

SNE 33(3) – 9/2023 109

T N
References

[1] Breitenecker F. Models, methods and experiments - a
new structure for simulation systems. Mathematics and
Computers in Simulation; 1992. 34(3). 231–260.

[2] Capocchi L, Santucci JF Discrete event modeling and
simulation for reinforcement learning system design.
Information; 2022. 13(3). 1-13

[3] Carson Y, Maria A. Simulation optimization: methods
and applications. In: Proceedings of the 1997 Winter
Simulation Conference; 1997. 118-126.

[4] Choo B, Graham C, Stephen A, Dadgostari F, Beling
PA. Reinforcement learning from simulated environ-
ments: an encoder decoder framework.
In: Proceedings of the SCS SpringSim’20 (Virtual)
Conference; 2020. 12 pages.

[5] Ehn G, Werner H. Reinforcement learning for planning
of a simulated production line. Master thesis,
Lund University; 2018.

[6] Feldkamp N, Bergmann S, Strassburger S. Simulation-
based deep reinforcement learning for modular
production systems. In: Proceedings of the 2020 Winter
Simulation Conference; 2020. 1596-1607.

[7] FG CEA Integration of RL and Discrete Event Simula-
tion: A Case study using MATLAB/ Simulink/
SimEvents. Wismar Univ. of Applied Sciences; Wismar.
https://github.com/cea-wismar.

[8] Gosavi A. Solving markov decision processes via
simulation. In Fu, M.C. (ed.), Handbook of Simulation
Optimization. Springer; 2015. 341-374.

[9] Greasley A. Implementing Reinforcement Learning in
Simio discrete-event simulation software.
In Proceedings of the SCS SummerSim’20 (Virtual) Con-
ference; 2020. 11 pages.

[10] Leng J, Jin C, Vogl A, Lui H. Deep reinforcement
learning for color-batching resequencing problem.
Journal of Manufacturing Systems, Elsevier, 56(2020);
2020. 175-187.

[11] Mahdavi A, Wolfe-Adam T. Artificial Intelligence and
Simulation in Business [White Paper]; 2020. (reading
date 10/20/2022).

[12] Pawletta T. Specification and execution of simulation
models and experiments. MS Workshop ‘One simulation
model is not enough’, Univ. of Rostock, Dep. of Com-
puter Science; 2019. https://www.cea-wis-
mar.de/pawel/Forschung/Poster_Slides/2019-04-23-
Presi_FG-CEA_UnivRo-WS_reducedSize.pdf.

[13] Schmidt A. Variant management in modeling and
simulation using the SES/MB framework [Dissertation].
In: Advances in Simulation. Bd. 30. TU Publisher Vienna
(in German); 2019.

[14] Shuhui Q, Wang J, Shivani G. Learning adaptive
dispatching rules for a manufacturing process system by
using reinforcement learning approach. In: 2016 IEEE -
21st International Conference on Emerging Technolo-
gies and Factory Automation (ETFA); 2016. 1-8.

[15] Sutton RS, Barto AG. Reinforcement learning:
an introduction – 2nd edition. MIT Press; 2018.

[16] The MathWorks. Reinforcement Learning Toolbox.
https://mathworks.com/products/reinforcement-learn-
ing.html, ©1994-2022 The MathWorks, Inc.; 2022.

[17] Traore MK, Muzy A. Capturing the dual relationship
between simulation models and their context. Simulation
Modeling Practice and Theory, Elsevier, 14(2006);
2006. 126-142.

[18] Zeigler BP. Multifacetted Modelling and Discrete Event
Simulation. Academic Press; 1984.

[19] Zeigler BP, et al. Theory of modeling and simulation –
3rd edition. Elsevier, Academic Press; 2018.

