
S N E S O F T W A R E N O T E

SNE 33(3) – 9/2023 125

ERS - Enterprise Resource Simulator:
a New Simulation Platform
Mark Oostveen, Michel Hofmeijer*, Fred Jansma

ERS development team, Incontrol Enterprise Dynamics, Jaap Bijzerweg 21 A,
3446 CR Woerden, The Netherlands; *Michel.Hofmeijer@incontrolsim.com

Abstract. ERS is a new simulation platform that allows
you to develop and run simulations fully utilizing modern
hardware. ERS supports multi-formalism in a simulation
model and utilizes a new mechanism to leverage new
techniques to scale models without fundamental size lim-
its. The ERS Platform provides development tools along-
side the simulation engine. ERS aims to integrate with
other tools and platforms. ERS allows the development of
tailor-made applications and libraries based on the en-
gine. Those libraries are, in principle, interoperable unless
specified. This allows experts in the field to create plug &
play applications and libraries to share inside the ERS eco-
system, including in specialized fields like Material handling,
logistics, crowd management, chemical materials, etc.

Introduction

Enterprise Resource Simulator (ERS) is the new simula-
tion platform developed by InControl (Enterprise-Dy-
namics). ERS provides an environment to develop, main-
tain, and run a significant variation of custom state-of-
the-art simulation applications. ERS provides these ap-
plications with a new powerful engine that allows them
to simulate what they need without worrying about the
most technical aspects of building a simulation applica-
tion. Using ERS, users can build applications with their
expertise while using InControl’s simulation expertise.
By building your own application on top of the ers-core,
you can have a large degree of freedom in how your ap-
plication simulates and runs.

ERS does not just allow the applications to be built
with the current state-of-the-art simulation capabilities
but advances that state-of-the-art based on the demands
of industry and science alike. ERS does this by enabling
a skilled developer to create large-scale applications that
can run with the proper computational resources. The
new platform does this by enabling users to efficiently
split Models so that computational resources can be used
to their full potential.

ERS provides access to state-of-the-art simultaneous
computation and multi-formalism in one Model. The
broad possibilities of ERS allow the developer to build
applications that can intuitively simulate the user’s prob-
lems without worrying if it fits the formalism chosen by
the platform.

This paper will explain how ERS works and how us-
ing ERS can benefit the developer of simulation applica-
tions and the user. We will explain the use case of ERS.
Also, we will explain how ERS works from a technical
point of view and why we choose the design of ERS.
Later in the paper, we will explain how this setup allows
us to develop applications that can have Models with
multiple formalisms within one Model. Lastly, we will
explain why the technical setup will lead to good perfor-
mance and scalability.

1 Technical Overview
In this chapter, we will discuss the technical architecture
of ERS. While ERS as a platform has many features and
abilities, the most important for this paper is the core sim-
ulation abilities of ERS. ERS does not define the logic of
the Model but does still run the Model. ERS provides
specific built-in tools that enable ERS to run complex
Models efficiently.

SNE 33(3), 2023, 125-132, DOI: 10.11128/sne.33.sw.10654
Received: 2023-10-18
Accepted: 2023-10-22
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Hofmeijer et al. ERS - Enterprise Resource Simulator: a New Simulation Platform

126 SNE 33(3) – 9/2023

S W
1.1 Model Structure
Before we discuss how ERS works, we
need to introduce four core concepts of the
architecture of ERS. The first of these con-
cepts is the Model.

The Model is the environment that en-
sures that all parts of the simulation-model are synced, it
handles the run and the communication within the simu-
lation-model. If two Models are loaded into ERS at the
same time, they function completely separately. The
Model is essential for implementing multi-formalism
through a Lookahead-Table.

All data needs to be inside the Model or have a con-
nection explicitly defined in the Model. One default con-
nection mandatorily created is with the Shared Space.
The Shared Space is unique per Model which can con-
tain predefined objects accessible in all Sub-Models. The
Shared Space can also contain assets that the Sub-Models
share. This can be, for example, 3D models, shared func-
tions, or shared static data. The only limitation is that ob-
jects in the shared space should not be changed during
run time. The limitation on changing objects in the
Shared Space at runtime is to enable ERS to parallelize
execution automatically. A Model can be multi-formalis-
tic and can be very complex. The smaller constituent
parts of the Model are called Sub-Models. The Model is
also where the initial random number generator is respon-
sible for creating a valid state in the Sub-Models, ensur-
ing determinism.

A Sub-Model is a largely independent uni-formalis-
tic part of the Model. What would be considered a com-
plete Model in most software applications would be con-
sidered a Sub-Model in ERS. Sub-Models are extremely
flexible, almost anything could be in a Sub-Model, and
their primary purpose is to use the efficient computation
possibilities and multi-formalism built into ERS. Sub-
Models implement their random number generator to en-
sure determinism in the Model. Sub-Models can contain
entire physical environments, or they could simply con-
tain a single algorithm. The decision to create a Sub-
Model should primarily depend on how separate the new
Sub-Model will be from the overall Model.

The Simulator is the object that runs a Sub-Model
and manages the sync-events and time within its Sub-
Model. Each Simulator has one unique Sub-Model. Each
Simulator is uni-formalistic and communicates with the
Model to sync the simulation-model.

The Simulator has its own internal time system, which
regulates the uni-formalistic Sub-Model.

For a Simulator to be used in a Model, it is tuned to a
specific formalism to handle time correctly. The Simula-
tor can run largely independently and only needs to stop
when it syncs with the rest of the Model. This makes
multi-threading more efficient, as when the Sub-Models
are mostly separate, they can work on separate threads
efficiently, reducing overhead, and conserving data
bandwidth.

1.2 Jobsystem, Lookahead-Table and Syncing
In ERS, the Models can be extensive, and many pro-
cesses can be scheduled and executed simultaneously. To
manage all these different tasks, possibly at the same
time, we have implemented a JobSystem. This system
schedules all the tasks that follow the user’s logic so that
the computation resources are kept sufficiently busy. The
system can be divided for ease of understanding into two
parts: jobs within a Sub-Model and jobs that do not be-
long to one Sub-Model.

Figure 2: The JobSystem, where multiple threads are
working together to execute five active jobs of
the JobSystem simultaneously.

The JobSystem generally aligns with other simulation
software when working in a single Sub-Model.

Figure 1: View of relationships between concepts, specifically between
Sub-Model, Simulator, and Model.

Hofmeijer et al. ERS - Enterprise Resource Simulator: a New Simulation Platform

SNE 33(3) – 9/2023 127

S W
When scheduling jobs generated

within a single Sub-Model, the JobSys-
tem follows the order defined by the user
and the formalism of that Sub-Model.
The basic properties of Sub-Model logic
are sequential, meaning that the order of
jobs in time is absolute.

However, as soon as jobs must be
scheduled that involve multiple Sub-
Models, this becomes more difficult. We
must solve the problem of data that is
needed by multiple threads that aren’t
necessarily at the same point in (simula-
tion) time because we must be certain
that all previously scheduled jobs must
be completed and cannot change the data
and structures. There are multiple ways
of handling this problem.

The first possible solution to synchronization would
be optimistic synchronization (Jafer, 2010), which allows
scheduling jobs that need Sub-Models that are not neces-
sarily aligned in time and saving the Sub-Models before
we execute the code. If it then turns out this was not pos-
sible, we restore the Models to their pre-calculation state.
However, because the size of the Models in ERS can be
enormous, making frequent backups is very memory ex-
pensive.

Instead, we use conservative synchronization, where
we only schedule the job when we know that both Sub-
Models are aligned. Of course, this means we may have
idle processor time since we might have to wait on the
slowest Model to realign in time. However, it can be
shown that conservative synchronization does outper-
form serial computation (Nicol, 1993) even in the worst
case. There are also examples of conservative synchroni-
zation outperforming optimistic synchronization in every
metric (Jafer, 2010). One of the reasons for the good per-
formance of conservative synchronization is that we can
use the resources, not used for the calculation of possible
future states, to do background tasks. In light of that evi-
dence and the belief that we have found a way to mini-
mize the waste of computational resources, we have cho-
sen conservative synchronization.

To solve the issue of processor time being wasted, we
use a Lookahead-Table in combination with the JobSys-
tem that determines the order of synchronization and at
what time the synchronization job takes place for the
Sub-Models in their local time.

The Lookahead-Table is a record of when each Simulator
needs to be synced with each other Simulator. Each Sim-
ulator has its own Lookahead-Table. The Simulator gen-
erates the sync-events by processing each action in a Sub-
Model (Figure 3). The Lookahead-Table lets the Simula-
tors run independently until they have to sync. The user
has to define a table that identifies these moments. The
sync can be run during the simulation by copying the
sync data to prevent modifications during the continued
execution of the Model (Figure 4).

Allowing application developers to determine the
sync-event time schedule makes it possible to have order-
of-events-violating Models without compromising cau-
sality. The events will always obey relative causality if a
sync-event is scheduled between events. The Lookahead-
Table enables the application developer to determine
how strict causality is enforced without leading to issues
in the results.

Figure 4: Update function of a Model calculating a new

destination time for each Simulator, and then starting
a job to update in parallel if it wasn’t already.

Figure 3: sync-events in the relation between Simulators.

Hofmeijer et al. ERS - Enterprise Resource Simulator: a New Simulation Platform

128 SNE 33(3) – 9/2023

S W

Figure 5: Update function of the Simulator, which keeps

executing events until causal rules block it.

The Lookahead-Table is different between simulation
runs with the same parameters, but this doesn’t impact
the simulation results. With the efficient splitting of the
Model into Sub-Models, there should not be a constant
stream of data going from one Sub-Model to another
since this will make overhead much larger and reduce the
benefits of multi-threading.

Another key observation is that the Lookahead-Table
cannot predict if a conditional data exchange is necessary
(unless explicitly given this possibility). So all possible
data exchanges need to be included in the Lookahead-
Table and can cause threads to wait on each other. How-
ever, ERS allows advanced users to interact with the
Lookahead-Table directly by scheduling sync-events and
modifying promises made to the Lookahead-Table by the
Sub-Model’s content.

Figure 6: Update loop of a Simulator in relation with a

Sub-Model.

1.3 Event Mechanism
In ERS, we found that some terminology did not suit our
needs perfectly. Because of this, we will define additional
terminology below.

Model-orchestrator is the time mechanism influ-
enced by the Lookahead-Tables to orchestrate sync-
events between Simulators.

Our new mechanism uses a pessimistic local hybrid-
DE-orchestrator as in (Gomes, 2018) sub-section 5.1
without rollbacks on each Sub-Model. The Model uses
conservative synchronization using sync-events that run
in parallel time-flows and conditionally converge, which
are orchestrated by a Model-orchestrator that can be dis-
tributed. The pessimistic nature of the orchestrator is
more complex than traditional orchestrators. In essence,
some events are executed in an optimistic fashion relative
to each other, but they cannot interfere with the states rel-
evant to each other. The “worst case” behavior is purely
pessimistic but can be avoided in almost all situations.

events Sub-Model a Sub-Model b

Local X_a X_b

Non-local Y_a Y_b

We define the relative temporal restrictions between
events in two ways. First, we categorize them as either
pessimistic or type 1 optimistic based on whether an ear-
lier event can be executed after a later event. If an earlier
event can be executed later, the restriction is type 1 opti-
mistic. The restriction is pessimistic if the later event
waits until the earlier event is finished. If two events hap-
pen at the same time, there are slightly different concerns.
When two events happen at the same time, the consider-
ation is whether one event can start without the other and
if the events can progress independently.

For this classification, we consider sync-events as
two events, one in each Sub-Model. In this setting, the
relation is type 2 optimistic when one event can start
without having to wait until the other event starts and
runs independently, and the restriction is conservative if
both Sub-Models have to wait on each other and run to-
gether. We follow a somewhat different naming conven-
tion as syncing is more typically categorized as conserva-
tive or (type 2) optimistic. In ERS, this relation is unique
to sync-events, as those are the only events that can be
required to be executed simultaneously.

Hofmeijer et al. ERS - Enterprise Resource Simulator: a New Simulation Platform

SNE 33(3) – 9/2023 129

S W
It is important to note that the

conditions are not equivalent. Pes-
simistic restrictions imply that a
previous event must be finished,
while conservative restrictions im-
ply that the two events have to start
at the same time and run together.

These restrictions are im-
portant to allow whether we can
calculate the events separately, in-
creasing the efficiency of the cal-
culations.

Local Sub-Model Events: are events entirely inside a
Sub-Model.

Model-Global-Events: are events involving multiple
Sub-Models.

Pessimistic relationship: requires that events are ex-
ecuted in order. Otherwise, causality is broken. We do
not have to specify whether it is also Conservative be-
cause two events of this type cannot be executed at the
same time.

Optimistic relationship: does not require that the
event is executed in the same order because events do not
impact one another in any way. This relation is both type
1 and 2 optimistic since these events are fully independ-
ent of each other.

Pessimistic & conservative relationship: does re-
quire events to be executed in order and can have a shared
state.

In the following table, we categorize each type of
event pair as either pessimistic or optimistic. For the pairs
(Y_a, Y_b) and (Y_b, Y_a) we also included whether
they are conservative or optimistic. Note that In ERS,
simultaneity cannot occur for two events in the same
Sub-Model, so we have not categorized those events. Be-
tween Sub-Models, simultaneity can occur, but not coor-
dinated by the Model directly, save for sync-events. So
while we categorize these pairs of events as optimistic,
they never interact, so there is no danger in doing so.

In the table, we show the relative temporal relations be-
tween different events inside a Model (as defined above).

2 Multi-formalism
In an ERS-based application, an application-builder is no
longer restricted by the formalism dictated by the soft-
ware he uses; instead, the application-builder can choose
the optimal formalism for the problem.

The freedom of choice for different formalisms is
achieved due to the new architecture of ERS, where the
engine can handle simulations running in multiple time
signatures simultaneously. This allows the user to Model
in several formalisms and allows different Sub-Models to
have different formalisms. These Sub-Models can inter-
act and form a larger whole, allowing even the most com-
plex systems to be simulated.

The strength of this way of modeling is how previ-
ously separate disciplines can be united in one Model.
This allows multiple teams to work in one integrated
Model. This can best be demonstrated in example case 1.

3 Example Case
Consider the case of a large international airport. The
managers of this airport want to know if their airport can
handle an expected increase in customers and flights. The
increased number of passengers can give issues to two
separate systems: terminal operations and baggage han-
dling. Of course, these could affect each other, but only
at specific points.

If the passengers are delayed checking in their bag-
gage, they will arrive later at the security lanes. Con-
versely, if the security lanes become too long, this might
delay flights, which will change the timing of the bag-
gage system.

Crowd dynamics, as is needed for the security lanes,
would typically be done in an agent-based simulation,
while the baggage system will typically be modeled in a
discrete-event based simulation.

Currently, these simulations would be made in differ-
ent applications that best handle their specific situations.
Resulting in two Models that would be run statically in
relation to each other. In ERS, these two Models could
be one Model which could correctly identify the effect
the two Sub-Models would have on each other.

Relative temporal
restrictions X_a X_b Y_a Y_b

X_a Pessimistic Optimistic Pessimistic Optimistic

X_b Optimistic Pessimistic Optimistic Pessimistic

Y_a Pessimistic Optimistic Pessimistic Pessimistic &
Conservative

Y_b Optimistic Pessimistic Pessimistic &
Conservative

Pessimistic

Hofmeijer et al. ERS - Enterprise Resource Simulator: a New Simulation Platform

130 SNE 33(3) – 9/2023

S W
This would not require reading in arrival lists, and the

Models can also dynamically be linked with each other
and, depending on the number of syncs needed, would
run in less than double the time of running the slowest
algorithm. However, because it only must run once and
not iteratively, it will result in much faster runs. In addi-
tion, it will result in more reliable results because the en-
tire Model can be created in a single application running
on the ERS platform, and it will allow faster debugging
and working in the Model because the connections be-
tween the various parts are more intuitive.

4 Splitting Models Efficiently
One of the core concerns of any program is that it runs
fast enough for its given purpose. For simulation soft-
ware, this means that the program needs to scale well and
be able to run within a reasonable time frame, given the
proper computational resources. In ERS, the application-
builder can significantly increase the application’s effi-
ciency since the application-builder can divide mostly
separate processes into separate Sub-Models. These Sub-
Models then can do most of their computations separately
because of the JobSystem and the Lookahead-Table. The
separation of these Sub-Models can speed up computa-
tions if the Sub-Models don’t need to communicate too
often, resulting in less overhead. The independence of
these Sub-Models also allows the user to define Sub-
Models so that the calculations can be distributed over
multiple threads.

5 Additional Challenges
In literature, specifically in (Gomes, 2018), and (Taylor,
2019) some challenges that have not yet been explicitly
discussed are identified. This part of the paper will dis-
cuss these challenges and their application to ERS.

Latency: It is recognized that latency is challenging
for synchronizing multiple computers to work on 1 task.
However, in most places where ERS will be used, e.g.,
data centers or local networks, latency will naturally be
minimized due to the scaling when splitting Sub-Models.
This latency problem grows smaller with the number of
Sub-Models. The Model can be split into other Sub-Mod-
els. We do not need to replicate the entire Model consen-
sus across all computers, only Lookahead-Tables for
Sub-Models that influence the Sub-Model running on a
computer.

Modular Composition—Algebraic Constraints: the
authors identify the need for some (continuous) Models
to enforce algebraic constraints at all times on several
Sub-Models, making them depend on each other. This
dependency can cause (near infinite) feedback loops.
This is unavoidable because ERS is a platform, so we do
not restrict the relations that can be defined between Sub-
Models. However, the worst case does not happen as an
infinite loop is not possible in ERS in that way, so it will,
at some point, resolve. In general, these kinds of errors
cannot be prevented by a simulation platform because it
is caused by inter-Sub-Model relations, which we cannot
regulate if we want to give application builders sufficient
freedom. In general, this is a concern, but this is not ap-
plicable to the ERS engine.

Algebraic Loops: algebraic loops are loops created by
the indirect dependence of variables on themselves. They
are very similar to Modular Composition—Algebraic
Constraints, and we accept them as possible problems
because we do not limit the ability of application builders
to make connections between Sub-Models.

Consistent Initialization of Simulator state: in some
Simulators, the input data has to obey certain conditions
to be valid. This can be seen as a sub-problem of the prob-
lem with Modular composition-algebraic constraints, in
the sense that this constraint is only necessary at the start
of the simulation. The argument is the same for the over-
all problem. At the same time, it is a problem; it is not a
problem that a simulation platform can solve and instead
should be handled by the application developer or the
model builder.

Compositional Convergence—Error Control: in
many simulation Models, there is the desire to estimate
the errors related to the underlying theoretical solution.
In ERS, we do not calculate this error since this is too
specific to be built into a platform. Instead, this can be
best handled by an application builder.

Compositional Stability: Similar to the last point,
many simulations might also want to estimate the stabil-
ity of the error compared to the theoretical solution. How-
ever, this problem is too specific to be handled at a plat-
form level and should instead be handled on an applica-
tion or user level.

Compositional continuity: for continuous Simulators
that are connected to non-continuous Simulators, it can
be an issue to retain the continuity in the connection. In
ERS, we allow almost arbitrarily small-time steps (up to
a single Planck time).

Hofmeijer et al. ERS - Enterprise Resource Simulator: a New Simulation Platform

SNE 33(3) – 9/2023 131

S W
This combats this issue as far as possible on a plat-

form level. Special measures can be taken on an applica-
tion or Model level, but a platform should not enforce
these.

Real-Time Constraints, Noise, and Delay: For con-
tinuous time simulation, whether it is completely internal
or part emulation, it is important to be able to support the
right frequency of updating (micro-step). ERS takes three
measures to support the right frequency.

First of all, as mentioned earlier, the platform does not
enforce a step size limit that can be physically restrictive
as time steps can be as small as a single Planck time. Sec-
ondly, ERS allows the total Model to be split into many
Sub-Models so that an application can take advantage of
simultaneous calculations as much as possible. Lastly,
ERS can support many different types of simulations
simultaneously, removing the need to model in several
applications and thus eliminating the issue of bad com-
munication, as long as no emulation is included.

However, even with these measures, implementing
the right frequency is not always possible, and dealing
with this remaining issue will have to be handled on an
application-to-application basis.

Discontinuity Identification: In communication with
continuous simulations, it is beneficial to identify discon-
tinuities. However, the core cause of the discontinuity
lies in the continuous Sub-Model or the communication
between Sub-Models.

In either case, the application developer is responsi-
ble, so it should be solved on an application or model
level and not on a platform level.

Discontinuity Handling: Once a discontinuity is
identified, it would be beneficial to handle that disconti-
nuity in a particular way so that the simulation can con-
tinue with reasonable accuracy.

However, because the cause of the discontinuity is in
the Model, it is best to handle this on an application level
and not on a platform level, because different types of
discontinuities might be handled differently.

Algebraic Loops, Legitimacy, and Zeno Behavior: as
we discussed earlier with algebraic loops, a more general
question can be asked about whether we should detect
potentially infinite event chains that either keep the sim-
ulation at the same time or represent an increasingly mi-
nor progression of time in such a way that the simulation
never reaches the designated endpoint. In general, we
cannot detect this behavior in ERS since it is Sub-Model
specific and cannot be identified with certainty without
knowledge of the internal working of the Sub-Model.

However, In ERS, loops cannot extend indefinitely
since the engine will not allow sub-Planck time incre-
ments (that by definition will not be physically conse-
quential) nor infinite scheduling on a single point in time.
This means that this behavior will always end in ERS –
but this will take a very long time to materialize as ERS
is designed for microscopic time-scale simulation.

Stability Under X: a concern for co-simulation
(Gomes, 2018), in general, is that the entire Model might
not be stable, even if all the Sub-Models are stable. This
is specific to a Simulator and should be handled by the
application or on the model level.

Some issues might cause instability, such as noise
caused by the communication between continuous time
and discrete time Models. However, the instability of the
whole system is still inherently caused by the design of
the Sub-Models, and so this issue should be checked and
corrected for by applications for which this behavior
could occur.

Theory of discrete event Approximated States: With
multi-formalistic co-simulation becoming commercially
viable, there is a need to develop a theoretical framework
for the quality of communication between continuous-
time and discrete-time simulation Models. We
acknowledge this, but this goes beyond the scope of this
paper. InControl will engage with the science community
to start the development of such a theoretical framework.

Standards for Hybrid Co-Simulation: Besides the-
ory, a new standard for co-simulation should be estab-
lished so that new Models can be developed on a solid
foundation. This is, in a sense, what ERS as a platform
does since it offers a way of building a wide variety of
co-simulation scenarios on one simulation platform.

This means that all applications build to solve these
scenarios can build on the solid foundation that ERS has
established.

Semantic Adaptation and Model Composition: A
central question in co-simulation is what information
needs to be included in the wrapper of a simulation. In
our case, this would be the Sub-Model or the Simulator.
In (Gomes, 2018) it is argued that this should be specific
to the Model, in contrast to how this is handled in ERS.
This paradox is solved by considering that the paper in-
cludes data transfer as part of the wrapper, while in ERS,
this is part of the sync event, which an application builder
can alter.

Thus ERS can have a single implementation of the
Sub-Model and Simulator concepts without running into
problems identified in (Gomes, 2018) .

Hofmeijer et al. ERS - Enterprise Resource Simulator: a New Simulation Platform

132 SNE 33(3) – 9/2023

S W
Predictive Step Sizes and Event Location: If the core

time concept of a simulation engine is based on discrete-
time (like in ERS), there is a question of how large the
time steps should be. In ERS, application builders pri-
marily regulate this since they can schedule their own
events. Meaning that the application builder can decide
the precision required.

While the precision might be sufficient, this approach
might still have efficiency concerns. For example, if very
high precision is used, this high precision can lead to a
large number of sync-events that do not transfer data.
These sync-events are unavoidable in ERS on a platform
level because we use conservative synchronization, so we
do not use the Lookahead-Table to resolve these sync-
events. This efficiency problem is of limited severity be-
cause sync-events that transfer no information only use a
tiny amount of computation resources.

In addition, the application builder can mostly pre-
vent unnecessary sync-events, so efficiency can be high
with the right implementation. Also, each Simulator al-
lows a specific step size to incorporate high precision in
sub-subsections of the entire simulation Model.

6 Conclusion
ERS is a new simulation platform for application builders
who want more freedom, power, and possibilities than
other simulation packages can offer. It allows for appli-
cations that model reality closely, even if reality is com-
plex and does not follow the constraints that any specific
formalism requires.

ERS works by splitting a complete Model into Sub-
Models whereby each Sub-Model uses its formalism and
can communicate and exchange data with other Sub-
Models through sync-events. The Model causality is
maintained by Lookahead-Tables, which create and
maintain a time consensus that determines the latest point
to which a Sub-Model can independently run. Sub-Mod-
els run concurrently or even remotely, allowing ERS to
scale well.

ERS allows application-builders to reach their full
potential and connect all relevant systems with reasona-
ble run times in one Model. It does this by allowing the
modelers and application builders to build a platform that
can support massive models and use third-party libraries
in the languages they know best.

ERS can support the needs of the application the mod-
eler wants.

References
[1] Gomes C. T. Co-simulation: a survey. ACM Computing

Surveys (CSUR). 2018 May; 51(3): 1-33.
[2] Jafer S, Wainer S. A. Conservative vs. Optimistic Paral-

lel Simulation of DEVS and Cell-DEVS: A Comparative
Study. Proceedings of the 2010 Summer Computer Sim-
ulation Conference. 2010 July; (pp. 342-349.).

[3] Nicol, D. M. The cost of conservative synchronization
in parallel discrete event simulations. 1993 April; J.
ACM, 2(40), 304–333.
doi:https://doi.org/10.1145/151261.151266

[4] Taylor, S. J. Distributed simulation: State-of-the-art and
potential for operational research. European Journal of
Operational Research, 2019 October; 237(1), 1-19.

