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Abstract.  ERS is a new simulation platform that allows 
you to develop and run simulations fully utilizing modern 
hardware. ERS supports multi-formalism in a simulation 
model and utilizes a new mechanism to leverage new 
techniques to scale models without fundamental size lim-
its. The ERS Platform provides development tools along-
side the simulation engine. ERS aims to integrate with 
other tools and platforms. ERS allows the development of 
tailor-made applications and libraries based on the en-
gine. Those libraries are, in principle, interoperable unless 
specified. This allows experts in the field to create plug & 
play applications and libraries to share inside the ERS eco-
system, including in specialized fields like Material handling, 
logistics, crowd management, chemical materials, etc. 

Introduction 

Enterprise Resource Simulator (ERS) is the new simula-
tion platform developed by InControl (Enterprise-Dy-
namics). ERS provides an environment to develop, main-
tain, and run a significant variation of custom state-of-
the-art simulation applications. ERS provides these ap-
plications with a new powerful engine that allows them 
to simulate what they need without worrying about the 
most technical aspects of building a simulation applica-
tion. Using ERS, users can build applications with their 
expertise while using InControl’s simulation expertise. 
By building your own application on top of the ers-core, 
you can have a large degree of freedom in how your ap-
plication simulates and runs.  

 
 

ERS does not just allow the applications to be built 
with the current state-of-the-art simulation capabilities 
but advances that state-of-the-art based on the demands 
of industry and science alike. ERS does this by enabling 
a skilled developer to create large-scale applications that 
can run with the proper computational resources. The 
new platform does this by enabling users to efficiently 
split Models so that computational resources can be used 
to their full potential.  

ERS provides access to state-of-the-art simultaneous 
computation and multi-formalism in one Model. The 
broad possibilities of ERS allow the developer to build 
applications that can intuitively simulate the user’s prob-
lems without worrying if it fits the formalism chosen by 
the platform.   

This paper will explain how ERS works and how us-
ing ERS can benefit the developer of simulation applica-
tions and the user. We will explain the use case of ERS. 
Also, we will explain how ERS works from a technical 
point of view and why we choose the design of ERS. 
Later in the paper, we will explain how this setup allows 
us to develop applications that can have Models with 
multiple formalisms within one Model.  Lastly, we will 
explain why the technical setup will lead to good perfor-
mance and scalability. 

1 Technical Overview 
In this chapter, we will discuss the technical architecture 
of ERS. While ERS as a platform has many features and 
abilities, the most important for this paper is the core sim-
ulation abilities of ERS. ERS does not define the logic of 
the Model but does still run the Model. ERS provides 
specific built-in tools that enable ERS to run complex 
Models efficiently. 
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1.1 Model Structure 
Before we discuss how ERS works, we 
need to introduce four core concepts of the 
architecture of ERS. The first of these con-
cepts is the Model. 

The Model is the environment that en-
sures that all parts of the simulation-model are synced, it 
handles the run and the communication within the simu-
lation-model. If two Models are loaded into ERS at the 
same time, they function completely separately. The 
Model is essential for implementing multi-formalism 
through a Lookahead-Table.  

All data needs to be inside the Model or have a con-
nection explicitly defined in the Model. One default con-
nection mandatorily created is with the Shared Space. 
The Shared Space is unique per Model which can con-
tain predefined objects accessible in all Sub-Models. The 
Shared Space can also contain assets that the Sub-Models 
share. This can be, for example, 3D models, shared func-
tions, or shared static data. The only limitation is that ob-
jects in the shared space should not be changed during 
run time. The limitation on changing objects in the 
Shared Space at runtime is to enable ERS to parallelize 
execution automatically. A Model can be multi-formalis-
tic and can be very complex. The smaller constituent 
parts of the Model are called Sub-Models. The Model is 
also where the initial random number generator is respon-
sible for creating a valid state in the Sub-Models, ensur-
ing determinism. 

A Sub-Model is a largely independent uni-formalis-
tic part of the Model. What would be considered a com-
plete Model in most software applications would be con-
sidered a Sub-Model in ERS. Sub-Models are extremely 
flexible, almost anything could be in a Sub-Model, and 
their primary purpose is to use the efficient computation 
possibilities and multi-formalism built into ERS. Sub-
Models implement their random number generator to en-
sure determinism in the Model. Sub-Models can contain 
entire physical environments, or they could simply con-
tain a single algorithm. The decision to create a Sub-
Model should primarily depend on how separate the new 
Sub-Model will be from the overall Model.  

The Simulator is the object that runs a Sub-Model 
and manages the sync-events and time within its Sub-
Model. Each Simulator has one unique Sub-Model. Each 
Simulator is uni-formalistic and communicates with the 
Model to sync the simulation-model.  

 

The Simulator has its own internal time system, which 
regulates the uni-formalistic Sub-Model.  

For a Simulator to be used in a Model, it is tuned to a 
specific formalism to handle time correctly. The Simula-
tor can run largely independently and only needs to stop 
when it syncs with the rest of the Model. This makes 
multi-threading more efficient, as when the Sub-Models 
are mostly separate, they can work on separate threads 
efficiently, reducing overhead, and conserving data 
bandwidth. 

1.2 Jobsystem, Lookahead-Table and Syncing 
In ERS, the Models can be extensive, and many pro-
cesses can be scheduled and executed simultaneously. To 
manage all these different tasks, possibly at the same 
time, we have implemented a JobSystem. This system 
schedules all the tasks that follow the user’s logic so that 
the computation resources are kept sufficiently busy. The 
system can be divided for ease of understanding into two 
parts: jobs within a Sub-Model and jobs that do not be-
long to one Sub-Model. 
 

 

Figure 2: The JobSystem, where multiple threads are 
working together to execute five active jobs of 
the JobSystem simultaneously. 

The JobSystem generally aligns with other simulation 
software when working in a single Sub-Model.  
 
 

 
 

Figure 1: View of relationships between concepts, specifically between 
Sub-Model, Simulator, and Model. 
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When scheduling jobs generated 

within a single Sub-Model, the JobSys-
tem follows the order defined by the user 
and the formalism of that Sub-Model.  
The basic properties of Sub-Model logic 
are sequential, meaning that the order of 
jobs in time is absolute. 

However, as soon as jobs must be 
scheduled that involve multiple Sub-
Models, this becomes more difficult. We 
must solve the problem of data that is 
needed by multiple threads that aren’t 
necessarily at the same point in (simula-
tion) time because we must be certain 
that all previously scheduled jobs must 
be completed and cannot change the data 
and structures. There are multiple ways  
of handling this problem.  

The first possible solution to synchronization would 
be optimistic synchronization (Jafer, 2010), which allows 
scheduling jobs that need Sub-Models that are not neces-
sarily aligned in time and saving the Sub-Models before 
we execute the code. If it then turns out this was not pos-
sible, we restore the Models to their pre-calculation state. 
However, because the size of the Models in ERS can be 
enormous, making frequent backups is very memory ex-
pensive. 

Instead, we use conservative synchronization, where 
we only schedule the job when we know that both Sub-
Models are aligned. Of course, this means we may have 
idle processor time since we might have to wait on the 
slowest Model to realign in time. However, it can be 
shown that conservative synchronization does outper-
form serial computation (Nicol, 1993) even in the worst 
case. There are also examples of conservative synchroni-
zation outperforming optimistic synchronization in every 
metric (Jafer, 2010). One of the reasons for the good per-
formance of conservative synchronization is that we can 
use the resources, not used for the calculation of possible 
future states, to do background tasks. In light of that evi-
dence and the belief that we have found a way to mini-
mize the waste of computational resources, we have cho-
sen conservative synchronization. 

To solve the issue of processor time being wasted, we 
use a Lookahead-Table in combination with the JobSys-
tem that determines the order of synchronization and at 
what time the synchronization job takes place for the 
Sub-Models in their local time.  

 

The Lookahead-Table is a record of when each Simulator 
needs to be synced with each other Simulator. Each Sim-
ulator has its own Lookahead-Table. The Simulator gen-
erates the sync-events by processing each action in a Sub-
Model (Figure 3). The Lookahead-Table lets the Simula-
tors run independently until they have to sync. The user 
has to define a table that identifies these moments. The 
sync can be run during the simulation by copying the 
sync data to prevent modifications during the continued 
execution of the Model (Figure 4).  

Allowing application developers to determine the 
sync-event time schedule makes it possible to have order-
of-events-violating Models without compromising cau-
sality. The events will always obey relative causality if a 
sync-event is scheduled between events. The Lookahead-
Table enables the application developer to determine 
how strict causality is enforced without leading to issues 
in the results. 

 
Figure 4: Update function of a Model calculating a new 

destination time for each Simulator, and then starting 
a job to update in parallel if it wasn’t already. 

 
Figure 3:  sync-events in the relation between Simulators. 
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Figure 5: Update function of the Simulator, which keeps 

executing events until causal rules block it. 

The Lookahead-Table is different between simulation 
runs with the same parameters, but this doesn’t impact 
the simulation results. With the efficient splitting of the 
Model into Sub-Models, there should not be a constant 
stream of data going from one Sub-Model to another 
since this will make overhead much larger and reduce the 
benefits of multi-threading.  

Another key observation is that the Lookahead-Table 
cannot predict if a conditional data exchange is necessary 
(unless explicitly given this possibility). So all possible 
data exchanges need to be included in the Lookahead-
Table and can cause threads to wait on each other. How-
ever, ERS allows advanced users to interact with the 
Lookahead-Table directly by scheduling sync-events and 
modifying promises made to the Lookahead-Table by the 
Sub-Model’s content. 

 

 
Figure 6: Update loop of a Simulator in relation with a 

Sub-Model. 

1.3 Event Mechanism 
In ERS, we found that some terminology did not suit our 
needs perfectly. Because of this, we will define additional 
terminology below. 

Model-orchestrator is the time mechanism influ-
enced by the Lookahead-Tables to orchestrate sync-
events between Simulators. 

Our new mechanism uses a pessimistic local hybrid-
DE-orchestrator as in (Gomes, 2018) sub-section 5.1 
without rollbacks on each Sub-Model. The Model uses 
conservative synchronization using sync-events that run 
in parallel time-flows and conditionally converge, which 
are orchestrated by a Model-orchestrator that can be dis-
tributed. The pessimistic nature of the orchestrator is 
more complex than traditional orchestrators. In essence, 
some events are executed in an optimistic fashion relative 
to each other, but they cannot interfere with the states rel-
evant to each other. The “worst case” behavior is purely 
pessimistic but can be avoided in almost all situations. 

 

events Sub-Model a Sub-Model b 

Local X_a X_b 

Non-local Y_a Y_b 

 
We define the relative temporal restrictions between 
events in two ways. First, we categorize them as either 
pessimistic or type 1 optimistic based on whether an ear-
lier event can be executed after a later event. If an earlier 
event can be executed later, the restriction is type 1 opti-
mistic. The restriction is pessimistic if the later event 
waits until the earlier event is finished. If two events hap-
pen at the same time, there are slightly different concerns. 
When two events happen at the same time, the consider-
ation is whether one event can start without the other and 
if the events can progress independently.  

For this classification, we consider sync-events as 
two events, one in each Sub-Model. In this setting, the 
relation is type 2 optimistic when one event can start 
without having to wait until the other event starts and 
runs independently, and the restriction is conservative if 
both Sub-Models have to wait on each other and run to-
gether. We follow a somewhat different naming conven-
tion as syncing is more typically categorized as conserva-
tive or (type 2) optimistic. In ERS, this relation is unique 
to sync-events, as those are the only events that can be 
required to be executed simultaneously.  
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It is important to note that the 

conditions are not equivalent. Pes-
simistic restrictions imply that a 
previous event must be finished, 
while conservative restrictions im-
ply that the two events have to start 
at the same time and run together.  

These restrictions are im-
portant to allow whether we can 
calculate the events separately, in-
creasing the efficiency of the cal-
culations. 

Local Sub-Model Events: are events entirely inside a 
Sub-Model. 

Model-Global-Events: are events involving multiple 
Sub-Models. 

Pessimistic relationship: requires that events are ex-
ecuted in order. Otherwise, causality is broken. We do 
not have to specify whether it is also Conservative be-
cause two events of this type cannot be executed at the 
same time. 

Optimistic relationship: does not require that the 
event is executed in the same order because events do not 
impact one another in any way. This relation is both type 
1 and 2 optimistic since these events are fully independ-
ent of each other. 

Pessimistic & conservative relationship: does re-
quire events to be executed in order and can have a shared 
state. 

In the following table, we categorize each type of 
event pair as either pessimistic or optimistic. For the pairs 
(Y_a, Y_b) and (Y_b, Y_a) we also included whether 
they are conservative or optimistic. Note that In ERS, 
simultaneity cannot occur for two events in the same 
Sub-Model, so we have not categorized those events. Be-
tween Sub-Models, simultaneity can occur, but not coor-
dinated by the Model directly, save for sync-events. So 
while we categorize these pairs of events as optimistic, 
they never interact, so there is no danger in doing so.  

In the table, we show the relative temporal relations be-
tween different events inside a Model (as defined above). 

2 Multi-formalism 
In an ERS-based application, an application-builder is no 
longer restricted by the formalism dictated by the soft-
ware he uses; instead, the application-builder can choose 
the optimal formalism for the problem. 

 

The freedom of choice for different formalisms is 
achieved due to the new architecture of ERS, where the 
engine can handle simulations running in multiple time 
signatures simultaneously. This allows the user to Model 
in several formalisms and allows different Sub-Models to 
have different formalisms. These Sub-Models can inter-
act and form a larger whole, allowing even the most com-
plex systems to be simulated.  

The strength of this way of modeling is how previ-
ously separate disciplines can be united in one Model. 
This allows multiple teams to work in one integrated 
Model. This can best be demonstrated in example case 1. 

3 Example Case 
Consider the case of a large international airport. The 
managers of this airport want to know if their airport can 
handle an expected increase in customers and flights. The 
increased number of passengers can give issues to two 
separate systems: terminal operations and baggage han-
dling. Of course, these could affect each other, but only 
at specific points. 

If the passengers are delayed checking in their bag-
gage, they will arrive later at the security lanes. Con-
versely, if the security lanes become too long, this might 
delay flights, which will change the timing of the bag-
gage system.  

Crowd dynamics, as is needed for the security lanes, 
would typically be done in an agent-based simulation, 
while the baggage system will typically be modeled in a 
discrete-event based simulation.  

Currently, these simulations would be made in differ-
ent applications that best handle their specific situations. 
Resulting in two Models that would be run statically in 
relation to each other. In ERS, these two Models could 
be one Model which could correctly identify the effect 
the two Sub-Models would have on each other.  

 

Relative temporal 
restrictions X_a X_b Y_a Y_b 

X_a Pessimistic Optimistic Pessimistic Optimistic 

X_b Optimistic Pessimistic Optimistic Pessimistic 

Y_a Pessimistic Optimistic Pessimistic Pessimistic & 
Conservative 

Y_b Optimistic Pessimistic Pessimistic & 
Conservative 

Pessimistic 
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This would not require reading in arrival lists, and the 

Models can also dynamically be linked with each other 
and, depending on the number of syncs needed, would 
run in less than double the time of running the slowest 
algorithm. However, because it only must run once and 
not iteratively, it will result in much faster runs. In addi-
tion, it will result in more reliable results because the en-
tire Model can be created in a single application running 
on the ERS platform, and it will allow faster debugging 
and working in the Model because the connections be-
tween the various parts are more intuitive. 

4 Splitting Models Efficiently  
One of the core concerns of any program is that it runs 
fast enough for its given purpose. For simulation soft-
ware, this means that the program needs to scale well and 
be able to run within a reasonable time frame, given the 
proper computational resources. In ERS, the application-
builder can significantly increase the application’s effi-
ciency since the application-builder can divide mostly 
separate processes into separate Sub-Models. These Sub-
Models then can do most of their computations separately 
because of the JobSystem and the Lookahead-Table. The 
separation of these Sub-Models can speed up computa-
tions if the Sub-Models don’t need to communicate too 
often, resulting in less overhead. The independence of 
these Sub-Models also allows the user to define Sub-
Models so that the calculations can be distributed over 
multiple threads.  

5 Additional Challenges 
In literature, specifically in (Gomes, 2018), and  (Taylor, 
2019) some challenges that have not yet been explicitly 
discussed are identified. This part of the paper will dis-
cuss these challenges and their application to ERS. 

Latency: It is recognized that latency is challenging 
for synchronizing multiple computers to work on 1 task. 
However, in most places where ERS will be used, e.g., 
data centers or local networks, latency will naturally be 
minimized due to the scaling when splitting Sub-Models. 
This latency problem grows smaller with the number of 
Sub-Models. The Model can be split into other Sub-Mod-
els. We do not need to replicate the entire Model consen-
sus across all computers, only Lookahead-Tables for 
Sub-Models that influence the Sub-Model running on a 
computer. 

Modular Composition—Algebraic Constraints: the 
authors identify the need for some (continuous) Models 
to enforce algebraic constraints at all times on several 
Sub-Models, making them depend on each other. This 
dependency can cause (near infinite) feedback loops. 
This is unavoidable because ERS is a platform, so we do 
not restrict the relations that can be defined between Sub-
Models. However, the worst case does not happen as an 
infinite loop is not possible in ERS in that way, so it will, 
at some point, resolve. In general, these kinds of errors 
cannot be prevented by a simulation platform because it 
is caused by inter-Sub-Model relations, which we cannot 
regulate if we want to give application builders sufficient 
freedom. In general, this is a concern, but this is not ap-
plicable to the ERS engine. 

Algebraic Loops: algebraic loops are loops created by 
the indirect dependence of variables on themselves. They 
are very similar to Modular Composition—Algebraic 
Constraints, and we accept them as possible problems 
because we do not limit the ability of application builders 
to make connections between Sub-Models. 

Consistent Initialization of Simulator state: in some 
Simulators, the input data has to obey certain conditions 
to be valid. This can be seen as a sub-problem of the prob-
lem with Modular composition-algebraic constraints, in 
the sense that this constraint is only necessary at the start 
of the simulation. The argument is the same for the over-
all problem. At the same time, it is a problem; it is not a 
problem that a simulation platform can solve and instead 
should be handled by the application developer or the 
model builder. 

Compositional Convergence—Error Control: in 
many simulation Models, there is the desire to estimate 
the errors related to the underlying theoretical solution. 
In ERS, we do not calculate this error since this is too 
specific to be built into a platform. Instead, this can be 
best handled by an application builder. 

Compositional Stability: Similar to the last point, 
many simulations might also want to estimate the stabil-
ity of the error compared to the theoretical solution. How-
ever, this problem is too specific to be handled at a plat-
form level and should instead be handled on an applica-
tion or user level. 

Compositional continuity: for continuous Simulators 
that are connected to non-continuous Simulators, it can 
be an issue to retain the continuity in the connection. In 
ERS, we allow almost arbitrarily small-time steps (up to 
a single Planck time).  



Hofmeijer et al.  ERS - Enterprise Resource Simulator: a New Simulation Platform 
 

SNE 33(3) – 9/2023     131 

S W 
This combats this issue as far as possible on a plat-

form level. Special measures can be taken on an applica-
tion or Model level, but a platform should not enforce 
these. 

Real-Time Constraints, Noise, and Delay: For con-
tinuous time simulation, whether it is completely internal 
or part emulation, it is important to be able to support the 
right frequency of updating (micro-step). ERS takes three 
measures to support the right frequency.  

First of all, as mentioned earlier, the platform does not 
enforce a step size limit that can be physically restrictive 
as time steps can be as small as a single Planck time. Sec-
ondly, ERS allows the total Model to be split into many 
Sub-Models so that an application can take advantage of 
simultaneous calculations as much as possible. Lastly, 
ERS can support many different types of simulations 
simultaneously, removing the need to model in several 
applications and thus eliminating the issue of bad com-
munication, as long as no emulation is included.  

However, even with these measures, implementing 
the right frequency is not always possible, and dealing 
with this remaining issue will have to be handled on an 
application-to-application basis. 

Discontinuity Identification: In communication with 
continuous simulations, it is beneficial to identify discon-
tinuities. However, the core cause of the discontinuity 
lies in the continuous Sub-Model or the communication 
between Sub-Models.  

In either case, the application developer is responsi-
ble, so it should be solved on an application or model 
level and not on a platform level.  

Discontinuity Handling: Once a discontinuity is 
identified, it would be beneficial to handle that disconti-
nuity in a particular way so that the simulation can con-
tinue with reasonable accuracy.  

However, because the cause of the discontinuity is in 
the Model, it is best to handle this on an application level 
and not on a platform level, because different types of 
discontinuities might be handled differently. 

Algebraic Loops, Legitimacy, and Zeno Behavior: as 
we discussed earlier with algebraic loops, a more general 
question can be asked about whether we should detect 
potentially infinite event chains that either keep the sim-
ulation at the same time or represent an increasingly mi-
nor progression of time in such a way that the simulation 
never reaches the designated endpoint. In general, we 
cannot detect this behavior in ERS since it is Sub-Model 
specific and cannot be identified with certainty without 
knowledge of the internal working of the Sub-Model. 

However, In ERS, loops cannot extend indefinitely 
since the engine will not allow sub-Planck time incre-
ments (that by definition will not be physically conse-
quential) nor infinite scheduling on a single point in time. 
This means that this behavior will always end in ERS – 
but this will take a very long time to materialize as ERS 
is designed for microscopic time-scale simulation. 

Stability Under X: a concern for co-simulation 
(Gomes, 2018), in general, is that the entire Model might 
not be stable, even if all the Sub-Models are stable. This 
is specific to a Simulator and should be handled by the 
application or on the model level.  

Some issues might cause instability, such as noise 
caused by the communication between continuous time 
and discrete time Models. However, the instability of the 
whole system is still inherently caused by the design of 
the Sub-Models, and so this issue should be checked and 
corrected for by applications for which this behavior 
could occur.  

Theory of discrete event Approximated States: With 
multi-formalistic co-simulation becoming commercially 
viable, there is a need to develop a theoretical framework 
for the quality of communication between continuous-
time and discrete-time simulation Models. We 
acknowledge this, but this goes beyond the scope of this 
paper. InControl will engage with the science community 
to start the development of such a theoretical framework. 

Standards for Hybrid Co-Simulation: Besides the-
ory, a new standard for co-simulation should be estab-
lished so that new Models can be developed on a solid 
foundation. This is, in a sense, what ERS as a platform 
does since it offers a way of building a wide variety of 
co-simulation scenarios on one simulation platform.  

This means that all applications build to solve these 
scenarios can build on the solid foundation that ERS has 
established. 

Semantic Adaptation and Model Composition: A 
central question in co-simulation is what information 
needs to be included in the wrapper of a simulation. In 
our case, this would be the Sub-Model or the Simulator. 
In (Gomes, 2018) it is argued that this should be specific 
to the Model, in contrast to how this is handled in ERS. 
This paradox is solved by considering that the paper in-
cludes data transfer as part of the wrapper, while in ERS, 
this is part of the sync event, which an application builder 
can alter.  

Thus ERS can have a single implementation of the 
Sub-Model and Simulator concepts without running into 
problems identified in (Gomes, 2018) . 
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Predictive Step Sizes and Event Location: If the core 

time concept of a simulation engine is based on discrete-
time (like in ERS), there is a question of how large the 
time steps should be. In ERS, application builders pri-
marily regulate this since they can schedule their own 
events. Meaning that the application builder can decide 
the precision required.  

While the precision might be sufficient, this approach 
might still have efficiency concerns. For example, if very 
high precision is used, this high precision can lead to a 
large number of sync-events that do not transfer data. 
These sync-events are unavoidable in ERS on a platform 
level because we use conservative synchronization, so we 
do not use the Lookahead-Table to resolve these sync-
events. This efficiency problem is of limited severity be-
cause sync-events that transfer no information only use a 
tiny amount of computation resources.  

In addition, the application builder can mostly pre-
vent unnecessary sync-events, so efficiency can be high 
with the right implementation. Also, each Simulator al-
lows a specific step size to incorporate high precision in 
sub-subsections of the entire simulation Model. 

6 Conclusion 
ERS is a new simulation platform for application builders 
who want more freedom, power, and possibilities than 
other simulation packages can offer. It allows for appli-
cations that model reality closely, even if reality is com-
plex and does not follow the constraints that any specific 
formalism requires. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ERS works by splitting a complete Model into Sub-
Models whereby each Sub-Model uses its formalism and 
can communicate and exchange data with other Sub-
Models through sync-events. The Model causality is 
maintained by Lookahead-Tables, which create and 
maintain a time consensus that determines the latest point 
to which a Sub-Model can independently run. Sub-Mod-
els run concurrently or even remotely, allowing ERS to 
scale well. 

ERS allows application-builders to reach their full 
potential and connect all relevant systems with reasona-
ble run times in one Model. It does this by allowing the 
modelers and application builders to build a platform that 
can support massive models and use third-party libraries 
in the languages they know best.  

ERS can support the needs of the application the mod-
eler wants.  
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