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Abstract. Driver fatigue is a risk factor for road crashes.
Fit for duty technologies could play a pivotal role in coun-
tering these crashes. Heart rate variability (HRV) and the
pulse wave shape are influenced by the autonomic ner-
vous system and are therefore affected by fatigue. This
work focusses on modelling their relationship with fa-
tigue and is basedondata recorded in a simulateddriving
study. Six different multivariate linear regression mod-
els, using either stepwise variable selection or principal
component analysis, are presented in this study. To ac-
count for differences in physiology, individual participant
baselines for HRV and pulse wave parameters are intro-
duced. Stepwise regression using any kind of baseline
yields the most promising results. The most promising
predictors are the ratio LF

HF between low and high fre-
quency components of HRV and heart rate. Finally, a
stepwise regression model with a baseline, which has an
adjusted R2 statistic of 0.17, is proposed for further use.
Nevertheless, further research with an extended dataset
is necessary, incorporating a more diverse participant
group and a higher number of recordings from severely
sleepy drivers.

Introduction
Around 7% of European road crashes and around 13%

crash-related injuries can be linked to driver fatigue

[1]. A fit-for-duty assessment system, which can alert

a driver of possible fatigue, has the potential to reduce

the number of crashes, injuries and deaths on Europe’s

roads. Fit for duty assessments are typically based on

ocular parameters [15, 16] or cognitive performance

[17], and often evaluate the driver response to some sort

of stimulus [18].

This work aims to develop a predictive model to es-

timate fatigue from cardiovascular parameters, derived

from heart rate variability (HRV) and pulse wave shape.

The model is meant for use in the field of commer-

cial driving within the EU-funded PANACEA project,

which stands for “practical and effective tools to moni-

tor and assess commercial drivers’ fitness to drive”, and

aims to take various driving impairments, such as alco-

hol or stress, into account.

1 Physiologial Background
1.1 Heart Rate Variability

The autonomous nervous system (ANS), which keeps

the body in homoeostasis, a state of stable physical

conditions, is constantly monitoring and correcting the

heart rate (HR) to the needed pace via the sinus node.

This means certain fluctuations in the time between two

successive heartbeats are in fact healthy.
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This variance indicates that our bodies can quickly

adapt to environmental change or stressors and shows a

degree of resilience. This fluctuation in t ime between

successive heartbeats is termed the heart rate variability

(HRV). [3]

Parameters derived from HRV can be extracted from

Electrocardiography (ECG) and are usually separated in

time and frequency domain parameters. An important

measure for most time-domain HRV parameters is the

normal-to-normal interval (NNI), which is a time se-

ries describing the time differences between successive

normal heartbeats. After transforming NNI to the fre-

quency domain, the power in certain frequency bands

are widely used parameters. A description of used time

and frequency domain parameters is given in table 1.

Overview of time (1-4) and frequency (5-10) domain
HRV parameters derived from ECG data. Units are
given in parenthesis. [14]

HRV Parameter Description

1 mean HR
(bpm)

Mean haert rate (HR) throughout a

recording

2 SDNN
(ms)

Standard deviation of NNIs

(i.e. the square root of variance of

NNIs)

3 RMSSD
(ms)

Root mean square of successive dif-

ferences of NNIs

4 pNN50
(%)

Percentage of successive NNIs, that

differ by more than 50 ms

5 TP (ms2) Total power in all frequency bands

6 LF (ms2) Power in the low frequency band

(0.04−0.15 Hz)

7 LFnorm (-) LF power divided by absolute

power of LF+HF

8 HF (ms2) Power in the high frequency band

(0.15−0.4 Hz)

9 HFnorm (-) HF power divided by absolute

power of LF+HF

10 LF
HF ratio (-) Ratio of low frequency and high

frequency power

As the body prepares for sleep, the heart rate de-

creases, allowing for more variability between beats,

and the parasympathetic branch of the ANS becomes

dominant while activity in the sympathetic branch of

the ANS decreases [4]. Thus, we hypothesize that as

fatigue arises, SDNN and HF should increase due to

higher parasympathetic activity, whereas LF, heart rate

and the LF
HF ratio, which is said to describe the balance

between the branches of the ANS, should decrease due

Even though HRV parameters, especially LF
HF ratio,

are appealing parameters for fatigue assessment due

to their physiological interpretation, they tend to show

some controversy. There are inconsistencies in findings

for all HRV parameters in connection to fatigue [19].

Concerning the frequency-domain HRV parameters, it

should be noted that multiple different procedures are

used to estimate the power spectrum and the applied

method is often not clarified. Due to various anatomical

factors, such as age or sex, there can also be large differ-

ences between individuals in HRV parameters [9, 10].

1.2 Pulse Wave

The ejection of blood from the heart causes a pressure

wave that is partly reflected as it propagates through the

arterial system. The pulse wave is the superposition of

this pressure pulse and its reflections. Pulse arrival time

(PAT) is the time from a point in the ECG, usually the

prominent R-peak, to the detection of the pulse wave

in a certain location of the body, in this case the finger.

The pulse wave can be measured using photoplethys-

mography (PPG). [11]

Even though pulse waves are dependent on measure-

ment location and individual factors, they mostly have

similar main features that can be extracted as parame-

ters. A general depiction of the pulse wave is shown in

figure 1. Characteristic points of the pulse wave include

the onset (PO, the point before blood pressure begins to

rise), diastolic blood pressure (Pdia, the minimal blood

pressure), systolic blood pressure (Psys, the first peak of

blood pressure), the dicrotic wave amplitude (Pdwa, the

second peak of the wave) and the dicrotic notch (Pnotch,

the through between first and second peak of the wave)

[26]. The total pulse duration (TPD) tT is measured as

the time from wave onset to the onset of the next wave.

Descriptions of the parameters derived from the pulse

wave are given in table 2.

It has been shown, that sleep deprivation affects

blood pressure and therefore also the pulse wave [20].

Nevertheless, only one study was found that links

changes in the pulse wave shape parameters to fatigue.

An evaluation of sleepiness while flying, rather than

driving, showed a significant increase in PAT, systolic

time and diastolic time, which is the time from wave

onset PO to the diastolic peak Pdwa [12].
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Overview of pulse wave parameters derived from
PPG and ECG data. [25, 27]

Pulse Wave
Parameter

Description

tT Total pulse duration (TPD): time from wave onset

PO to the onset of the next wave

tsys Time from wave onset to systolic pressure Psys

tsys_rel Time from wave onset to systolic pressure Psys,

relative to the TPD tT

tnotch Time from wave onset to dicrotic notch Pnotch

tnotch_rel Time from wave onset to dicrotic notch Pnotch,

relative to the TPD tT

tdwa_rel Time from wave onset to dicrotic wave amplitude

Pdwa, relative to the TPD tT

Pdwa_sys Dicrotic wave amplitude relative to systolic blood

pressure:
Pdwa
Psys

Pnotch_sys Amplitude of the dicrotic notch relative to sys-

tolic blood pressure:
Pnotch
Psys

Pnotch_dwa Amplitude of the dicrotic notch relative to di-

crotic wave amplitude:
Pnotch
Pdwa

PAT Pulse arrival time

2 Methods

2.1 Data Collection and Processing

The data collection was conducted by the Swedish Na-

tional Road and Transport Research Institute (VTI) in

Linköping, Sweden. In total, 30 male professional

drivers, who did not work nights and who are free

of motion sickness and sleep disorders, completed six

driving simulation tasks each. While the primary fo-

cus of the pilot trial was to examine effects of social

drinking in the evening (target blood alcohol content

(BAC) of 0.5�) on next-day driving performance, the

secondary focus was on fatigue data and modelling.

Driving tasks took approximately 35 minutes and

were completed in a driving simulator in three different

conditions: a control condition (C), where participants

were under no known influence, a condition for the ef-

fect of alcohol (condition A), where drivers were in-

toxicated for half the measurements, and measurements

conducted the day after drinking (condition B). Details

concerning the measurement conditions are shown in

table 3. Figure 2 shows the driving simulator and ex-

amples of scenery shown during the driving tasks.

Fatigue is measured using the subjective nine-point

Karolinska Sleepiness Scale (KSS), depicted in table 4.

The image shows all characteristic points of the
pulse wave (labelled in green) and all significant
time durations (labelled in blue) used in this study.

Summary of basic parameters for the different
conditions in which each participant completed the
simulated driving exercises. The blood alcohol
content is abrreviated by BAC.

Condition Purpose Influence Time of Day

A Alcohol BAC 0.3�- 0.7�
for half the drives

3 p.m. - 9.30 p.m

B Day After Residual Alcohol 7 a.m. - 1 p.m

C Control None 7 a.m. - 1 p.m

Left: The driving simulator used in the data
collection. Right: Two examples of the simulated
driving environment in rural (top) and urban
(bottom) surroundings.
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Drivers were asked to rate their level of fatigue on

the KSS before and after driving. Using an objective

ground truth of sleepiness would have been favourable,

but available objective technologies suffer from intra-

and interindividual differences and small effect sizes,

whereas KSS has been found to be the measure of driver

sleepiness least affected by inter-individual variations

[2].

AIT Austrian Institute of Technology’s proprietary

device, the SmartPWA, was used to record ECG and

PPG signals both before and after driving. Measure-

ments while driving are not possible, since the device

must be held with both hands for recording signals. A

detailed description of the device can be found in Meng-

den et al. [13]. In accordance with the standards of

measurement for heart rate variability [14], at least two

minutes of ECG and PPG data were recorded for each

measurement in this trial.

For HRV measures in the frequency domain, the se-

ries of NNIs is transformed using the Lomb-Scargle-

periodogram without interpolation [22, 23]. From this

periodogram, the power in the low frequency band

(0.04 - 0.15 Hz), the power in the high frequency band

(0.15 - 0.04 Hz) as well as the total power are derived

using the integral in the respective intervals. Data pro-

cessing and modelling were conducted in MATLAB

R2022b (The MathWorks Inc., Natick, USA).

Levels of the Karolinska Sleepiness Scale (KSS) [2]

Level Description

1 Extremely alert

2 Very alert

3 Alert

4 Rather alert

5 Neither alert nor sleepy

6 Some signs of sleepiness

7 Sleepy, but no effort to keep awake

8 Sleepy, some effort to keep awake

9 Very sleepy, great effort to keep awake, fighting sleep

2.2 Modelling

In addition to the ECG and PPG parameters already

described, age, height, and weight were also included

as predictors in the regression models. The number

of parameters is too large to sensibly include all in

one predictive model, which raises the question, which

parameters attribute most to accurate prediction of fa-

tigue. MATLAB’s predefined functions for dimension

reduction using principal component analysis (PCA)

and stepwise variable selection, respectively, were used

to determine the most valuable predictors and generate

multivariate linear regression models.

Since alcohol is a known confounder of HRV [21],

all models using no baseline were trained on data from

condition C and, due to lack of more uninfluenced data,

tested on data from condition A and B.

The individual differences in HRV and pulse wave

parameters used as predictors in the generated regres-

sion models can have a huge effect on the generality of

these models. Therefore, two different versions of an

individual baseline were pursued: a fixed baseline (F)

and a dynamic baseline (D).

Fixed Baseline (F). For each individual, the first

measurement taken in control condition C, before driv-

ing, is used as the baseline. The training data then con-

sists of the differences between any other measurement

and the allocated participant baseline.

However, using recordings from condition C as a

baseline, does not leave enough condition C recordings

to train a model. Instead, for each participant, the two

measurements for a given recording time (before or af-

ter driving) and a given condition (A,B or C) are ran-

domly divided between the test and training data set.

Dynamic Baseline (D). The measurement before

driving serves as a baseline in values for each partici-

pant for this particular drive. This baseline is dynamic

in the sense that for each driving simulation a new par-

ticipant baseline is set. The model is trained on the

differences between before and after driving for data

measured in condition C. Hence, the focus lies on the

change in parameters throughout a simulated drive. The

model is tested on the differences of parameters be-

tween before and after driving for data measured in con-

ditions A and B.

Modelling Approaches. All generated models use

combinations of the HRV and pulse wave parameters,

presented in tables 1 and 2, as well as metadata (height,

weight or age) to predict the level of fatigue on the KSS.

Six different approaches, depicted in figure 3, were

pursued when generating multivariate linear regression

models.
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N

SLNC PCNS

F

SLFS

D

SLDC SLDS PCDS

no baseline

stepwise
lin. model PCA

fixed
baseline

stepwise
lin. model

dynamic
baseline

combined
stepwise
lin. model

single
stepwise
lin. model PCA

The tree represents an overview of different choices of baselines and modelling approaches for generating a model. A
model can use no baseline (N), a fixed baseline (F) or a dynamic baseline (D). Applied methods can be principal
component analysis (PC-) or stepwise linear regression (SL-). The subscript C indicates that the model is a combination
of two models, where HRV and pulse wave data were modelled separately, while S indicates that one single model was
generated from all data.

Each approach consists of a choice of baseline (fixed

(-F), dynamic (-D) or none (-N)) and a choice of mod-

elling method (PCA (PC-) or stepwise variable selec-

tion (SL-)). The models are given a three-letter name,

where the first two indicate the chosen method while

the last indicates the choice of baseline.

In some cases, HRV and pulse wave data are mod-

elled separately, since, due to lack of signal quality,

there are many missing values in pulse wave param-

eters. Generating separate models for the parameter

groups allows the use of a larger training set for the

HRV component of the model.

The final prediction for such models, which are in

fact a combination of two models, is set as the average

of both contributing predictions.

Models that are actually a combination of two sep-

arate models for HRV and pulse wave data are marked

with a subscript C, while those generated as a single

model from all data simultaneously are marked with a

subscript S.

Evaluation. The models are evaluated using the F-

test, which determines the statistical significance of the

relationship between a group of predictors and the re-

sponse. The relationship given by a model is signif-

icant, if the p-value determined by the F-test is be-

low the level of significance α = 0.05. Residual plots

are used to detect systematic error or non-normality of

errors and residuals are tested for normality using the

Anderson-Darling test.

Models are also compared to each other with respect

to quality of fit, using the adjusted R2 statistic as well

as root mean square error (RMSE), based on the differ-

ence between measured and predicted KSS, on test and

training data as main indicators of goodness of fit.

3 Results
The median age of the drivers was 40 years with an in-

terquartile range (IQR) of 12 years. The participants

had a median height of 183 cm with an IQR of 9 cm.

The median weight of drivers was 91 kg with an IQR of

21 kg.

Table 5 shows a summary of model results. The re-

sults of the F-test indicate that all but one model are

statistically significant. The model PCNS is not statis-

tically significant. While the model SLDS has an ad-

justed R2 statistic of 0.6, all other models are below

0.25. The root mean square error of the models ranges

from 0.76 to 1.26 for training data. For test data RMSE

is between 1.3 and 1.75.

The tables 6 and 7 show the RMSE for data from

each of the conditions separately. In general, the pre-

diction error seems to be highest in condition B, the day

after drinking, while it is lowest on data from condition

C, on which most models were trained.

Graphical residual analysis using residual plots

did not reveal any inappropriate model choices or

correlated errors.
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he table shows key characteristics of quality of fit,
the adjusted R2 statistic and the root mean square
error (RMSE) on both training and test data on the
KSS scale (1-9), for each of the models discussed.
Additionally, the p-value of the F-test versus a
constant model is given for each of the models.

Model Adjusted
R2

Training
RMSE

Test
RMSE

F-Test

SLNC 0.21 1.11 1.55 pHRV = 0.0053

pPW = 0.0274

SLDC 0.17 1.19 1.41 pHRV = 0.0035

pPW = 0.0143

SLDS 0.60 0.76 1.75 p = 0.0002

SLFS 0.14 1.14 1.3 p = 0.0037

PCNS 0.07 1.26 1.55 p = 0.4924

PCDS 0.25 1.19 1.52 p = 0.0235

RMSE for KSS estimates on the scale of 1 to 9 of
SLNC, SLFS and PCNS models. The RMSE is given for
each data category separately. The training data set
of SLNC and PCNS is marked by an asterisk.

Data SLNC SLFS PCNS

C (before)∗ 1.04 - 1.26

C (after) 1.21 1.08 1.23

B (before) 1.68 1.35 1.49

B (after) 1.78 1.52 1.65

A (before) 1.35 1.03 1.35

A (after) 1.61 1.08 1.69

RMSE for KSS estimates on the scale of 1 to 9 of
models using dynamic baselines, i.e. SLD and PCDS

models. The RMSE is given for each data category
separately. The training data set is marked by an
asterisk.

Data SLDC SLDS PCDS

C∗ 1.19 0.76 1.19

B 1.52 1.48 1.68

A 1.30 1.97 1.36

While the residuals of the models SLNC, SLDC,

SLDS and the principal component models PCNS and

PCDS passed the Anderson-Darling test of normality,

those of the model SLFS did not.

Table 8 gives an overview of the variables included

in each of the generated stepwise linear models as well

as their estimated coefficient values.

The most important variables in the generated re-

gression models seem to be age and heart rate, which

are both selected in three models (with a statistical sig-

nificant relationship in two of them), as well as the HF
LF -

ratio for HRV data, which is selected in all models and

is significant in two of these. Concerning pulse wave

parameters, systolic time and total pulse duration are

chosen with a statistically significant coefficient com-

paratively often: in two and three models, respectively.

This table shows an overview of the variables chosen
by each stepwise regression model as well as their
computed coefficients. An asterisk indicates
statistical significance at the level α = 0.05 in the
corresponding model. Fields of coefficients, that
were not selected, are shaded in dark grey, while
those that were not statistically significant are
shaded in light grey.

Variable SLNC SLDC SLDS SLFS

intercept −1.5800 0.3155 −7.2307 4.8773

age −0.0915∗ 0.0379 −0.0378∗

height −0.0413 0.0453 0.318

weight −0.0298

mean HR −0.0688∗ −0.0966∗ −0.0736

LF 418.15 −1175.50∗ −394.46

HF 5567.10∗

LF
HF ratio 0.1858 0.2751∗ 1.0477∗ −0.1314

RMSSD

SDNN −0.0967∗

pNN50 −2.282 −13.4670∗

TP 358.86 325.96∗

LFnorm 4.3528∗

HFnorm

tT 0.0206∗ −0.0093∗

tnotch

tsys_rel 65.2190∗

tnotch_rel 22.762∗

tdwa_rel 8.4928

tsys −0.0690∗ −0.0160∗ −0.0237∗

Pdwa_sys 29.6110 5.3830 6.3948∗

Pnotch_sys −32.1640

Pnotch_dwa 18.7490

PAT −0.0142 0.0598∗

The principal component model with no baseline

(PCNS) uses eight of the 23 computed principal com-

ponents, none of which are statistically significant.
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The model PCDS uses five principal components,

two of which have a significant relationship to the re-

sponse.

The model SLDC is described in greater detail, since

this is later chosen as the most favourable model. Pre-

dictions are calculated using the formula

KSSest =
(KSSHRV +KSSPW)

2

where the KSS values from HRV and PW data are esti-

mated by

KSSHRV = KHRV + c1
LF

HF

KSSPW = KPW + c2tdwp_rel + c3tsys + c4Pdwp_sys + c5PAT.

KHRV and KPW denote the estimated intercept included

in the corresponding models while the coefficients are

referred to as c j, j = 1, . . . ,5. Figure 4 shows the es-

timated KSS values, fitted by the model SLDC, plotted

against the corresponding measured KSS values.

4 Discussion

This work aims to predict fatigue on the KSS from HRV

and pulse wave parameters. Four different stepwise lin-

ear regression models, the coefficients of which can be

found in table 8, and two models using principal com-

ponent analysis were generated. Using linear regres-

sion resulted in fatigue predictions that were on average

about 1.5 KSS units wrong. Principal component anal-

ysis and regression did not lead to improvement com-

pared to stepwise linear regression models, especially

with respect to statistical significance. This could be

due to the complexity of the cardiovascular system and

the multitude of confounding factors, many of which

could not be included in the regression data. Due to

the large individual differences in HRV and pulse wave

data, using a baseline improved model results.

While many studies investigate the connection be-

tween single HRV measures and fatigue [4, 5, 8, 19],

only one study was found, that evaluates this relation-

ship for pulse wave shape parameters [12]. In these pre-

vious studies HRV and pulse wave shape parameters are

used for continuous fatigue monitoring during driving.

As this study attempts to assess driver sleepiness prior

to driving and no previous research on predictive regres-

sion models for fatigue based on cardiovascular param-

eters was found, the results of this study are difficult to

put into context.

The variables age, heart rate and LF
HF -ratio are often

included as variables, while also being statistically sig-

nificant in the stepwise regression models of this work.

They are therefore considered to be the most important

HRV parameters connected to fatigue. Similarly, when

looking at the results of this study, systolic time and

total pulse duration are very important pulse wave pa-

rameters for fatigue assessment.

These parameters are also considered to be impor-

tant variables in previous studies, however, for the sys-

tolic time and frequency-domain HRV measures, the

coefficient signs are mostly the opposite of what could

have been expected from previous research [6, 8, 12].

In comparison to literature, the influence of height and

weight is smaller than expected [10]. They are not

chosen with a statistically significant coefficient in any

model. RMSSD is not included at all and therefore

seems to be of low importance. PAT is chosen with

a statistically significant coefficient in one model, but

seems to be less sensitive to changes in fatigue than ex-

pected.

Both, previous studies and the stepwise regression

models of this study suggest that the LF
HF ratio is of ut-

most importance for fatigue prediction, but contradic-

tory results pose challenges in its use as a predictor.

While most studies, such as [6], show a negative trend

for rising sleepiness, some research, such as Rodriguez-

Ibañez et al. [7], shows the opposite or, as in Abtahi et

al. [8], finds no significant change. In this work the
LF
HF ratio is included significantly with a positive trend

in two models, SLDS and SLDC. Contradictory results

could be caused by confounding factors or, as suggested

in the standards of measurement for HRV [14], could

be the result of varying methods in use to obtain the

frequency-domain measures. Since most studies do not

clarify the applied method, the exact influence can not

be determined. Alternatively, increased stress due to

fighting fatigue, when driving on real roads compared

to a simulated environment, could increase sympathetic

activity and therefore affect HRV and limit the compa-

rability of studies [8].

For the model SLDS the heart rate and HF power

are included as expected [8]. The models SLFS, SLNC

and SLDC each include one variable as the literature

review would suggest (TP, HR and PAT, respectively)

[8, 12].
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KSS values fitted by the model SLDC are plotted against the corresponding measured KSS values in each group. The
black dotted line indicates the line of equality between measures and estimates.

Even though all residual plots look acceptable, the

residuals of the model SLFS failed the test of normality,

indicating possible systematic error. Therefore, its re-

sults should be used with caution. The model SLDS on

the other hand, shows signs of overfitting. The adjusted

R2 statistic indicates a higher portion of explained vari-

ance than could be expected in such a complex sys-

tem and especially the high difference between test and

training RMSE causes doubts, whether this is a suitable

choice.

The model SLFS has an acceptable R2 value and re-

tains a higher generality than other models presented in

this study. However, the better quality of fit of SLFS

must be seen in the context of test and training data.

While all other models were trained on condition C and

tested on conditions A and B, both training and test data

sets of the SLFS model contained measurements from

all conditions.

In the context of predictions, low p-values and

RMSE are essential. Therefore, even though SLNC has

low training error and high adjusted R2, it may not be

suited for the intended use, since only 6 out of 15 vari-

able coefficients are statistically significant. The com-

bination of all variables is considered to be significant

at the level α = 0.05, but the p-value is higher than that

achieved by other models.

The model SLDC seems to strike a balance, where

a good amount of variance is explained through a small

number of variables, while statistical significance, pre-

diction error and the normality of residuals are all ac-

ceptable. Nevertheless, the results should be interpreted

with caution, since this model includes some variables,

most notably the LF
HF ratio and systolic time, in a differ-

ent manner, i.e. opposite sign of the coefficient, than

the majority of previous research.

One limitation of this work is that the data used for

the purpose of generating the regression models is not

perfectly suited to the task. Considering the fact that

predicting high KSS values is of most interest in the

context of driving, it is unfortunate, that over 90% of all

recorded KSS values are below 7.

During the entire trial, no participant was tired

enough to evaluate themselves at the highest KSS value

of 9. This fact does not allow to generate or even test a

model, that predicts fatigue accurately at the top end of

the scale, thus a generally valid model.

Additionally, the training data set is rather small,

after removing data influenced by alcohol. Therefore,

no data without known influences can be reserved for

model testing, which makes the interpretation of re-

sults difficult. Multiple factors, such as age, sex, shift

work or certain medical conditions can affect HRV and

pulse wave parameters and should also be accounted for

[14, 24].

5 Conclusion

In the context of quantifying the relationship between

fatigue and physiological parameters of the cardiovas-

cular system, which are sensitive to changes in fatigue

due to their connection to the autonomic nervous

system, the presented linear regression models using

stepwise variable selection produce promising results.

Even with the restriction of a small data set with

avoidable confounding factors, this work shows that

the prediction of fatigue on the KSS scale through a

regression model using cardiovascular parameters is

not only feasible in theory, but also in practice.
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Of course, the methods and models presented and

discussed in this work need to be refined, especially by

incorporating larger and more heterogeneous data sets,

before fatigue assessment for commercial drivers can be

used at a large scale. The dataset included only healthy,

male participants, mainly between the ages of 30 and

50. Even though the homogeneous participant group

has the advantage that much variability can be avoided

at such an early stage, it also means the models must

be generalised and re-evaluated to be applicable to the

entire adult population.
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