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Abstract.  Manufacturing processes are increasingly 
driven by new product needs, innovations, and cost effi-
ciency. Planning Staff and decision makers face the chal-
lenge of achieving fixed production programs and subse-
quently individual orders in a certain quantity and within 
a certain period at a guaranteed completion date. A sys-
tematic approach to scheduling and tracking resource re-
quirements is necessary to ensure efficient flow of manu-
factured products. Forward- and backward-oriented plan-
ning strategies are most used by manufacturers to meet 
their demands for existing orders. The current application 
of such approaches is very time and resource intensive 
due to the complexity and dimension of the decision and 
planning problems to be considered; it is difficult to react 
to short-term changes within the production program. To 
address this gap, this paper provides a systematic litera-
ture review of backward decision and planning ap-
proaches in production scenarios and presents a poten-
tial over-arching solution approach of a simulation- and 
machine learning-based decision support combination 
for operational production planning. 

Introduction 
Global business, an advancing digital transformation, 
and the need for on-time production and delivery are de-
fining competitive factors for manufacturers. For produc-
tion planning and control (PPC), the efficient flow of 
manufacturing processes is indispensable.  

Companies need to be constantly aware of the contin-
uous adoption screws for PPC to establish and maintain 
an "optimal operating state" and therefore an efficient or-
ganization of all manufacturing processes. Uncertainty in 
PPC and the resulting adjustments can have unexpected 
repercussions on the performance of production systems 
and result in monetary and time resources being misused. 
A permanent (effective) adjustment of PPC also requires 
flexibility regarding structuring within manufacturing 
companies to be able to adapt to continuously changing 
market situations and correlating customer requirements. 

Planners and decision makers are faced with the chal-
lenge of achieving fixed production programs and subse-
quently individual orders in a certain quantity and within 
a certain period at a guaranteed completion date. The suc-
cess in terms of an efficient flow of manufacturing pro-
cesses demands a systematic approach to scheduling and 
tracking of resource requirements. 

Orders can be planned in a variety of ways, depending 
on the specifics of a given company and the characteris-
tics of an order. The most common strategies are for-
ward- and backward-oriented planning approaches [1].  

In a series of experiments, the authors have shown 
that the use of a backward-oriented application of mate-
rial flow simulation models (SimBack) can be a powerful 
tool for operational production planning, see [2][3]; how-
ever, the current usage of such approaches is also very 
time-consuming and resource-intensive due to the com-
plexity and dimension of the decision and planning prob-
lems considered. In addition, it is difficult to react to 
short-term changes within the production program.  

The authors intend to provide an extended solution 
approach to the given problem. Before, a systematic lit-
erature review on applications of backward decision and 
planning approaches in production scenarios was con-
ducted.  
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This includes identifying applications of backward 

scheduling and backward simulation, as well as imple-
mentation challenges. We intend to answer the following 
research question for production scenarios: “What appli-
cations of backward scheduling and backward simulation 
exist in the field of production planning and control?”. 

To answer these research questions, we give a short 
definition and delimitation of the terms backward sched-
uling and backward simulation in Section 1, followed by 
the applied review methodology in Section 2. Section 3 
presents the results of our analysis. Section 4 addresses 
the potential of simulation models for targeted data gen-
eration and evaluation (data farming, cf. for example [4]) 
as well as their application for further optimization of tar-
get values, which is rarely used today, and presents a po-
tential overarching solution approach of a machine learn-
ing-based decision support for operational production 
planning based on the extension of the methodological 
SimBack approach to generate a scheduling by backward 
simulation to a targeted data generation and evaluation 
based on the approach of data farming. Finally, a conclu-
sion is given in Section 5. 

1 Terminology 
1.1 Backward Scheduling 
Scheduling is a continuous decision-making process that 
involves scheduling tasks over time periods. The goal is 
generally to optimize one or more objectives. This can be 
used in manufacturing and services industries, as well as 
other industries where demand changes almost daily [5]. 

The procedures of a forward and backward schedul-
ing can be described, which serve as solution procedures 
for scheduling and a correlating scheduling logic. The 
schedule logic is the process of organizing activities into 
a predictable and repeatable order. Scheduling steps of-
ten include assigning times, establishing priorities (prior-
ity control), prioritizing resources from highest to lowest 
priority and tracking progress towards completion, 
among others [6]. 

Forward scheduling is a process that sets deadlines 
for each work task and moves from a certain starting 
point (date) to complete the work within a specified pe-
riod, with no waiting times between tasks. In contrast, 
backward scheduling is a technique for determining the 
latest possible start date of individual orders based on 
pending completion dates. This procedure is particularly 
useful for scheduling orders promised to customers with 
guaranteed completion dates.  

The primary advantage of backward scheduling is that 
orders are not manufactured until the latest possible date. 
This allows for a capital commitment to be minimized, 
which in turn minimizes downtime from disruptions in 
production. However, there is always a risk that a disrup-
tion cannot be absorbed by the production process [7]. 

Manual scheduling procedures, which include forward 
and backward scheduling, provide a good basis for deci-
sion-making according to the insertion of a given produc-
tion program and detect possible delays of individual or-
ders. However, changing the scheduling framework such 
as by short-term insertions is usually complicated. 

1.2 Backward Simulation 
In addition to existing methods of mixed integer optimi-
zation, simulation-based heuristics, and simple forward 
or backward scheduling, simulation-based optimization 
is becoming more and more important for manufacturing 
companies in many industries, see [8][9]. Gutenschwager 
et al. [10] point that, it is regularly shown that the use of 
simulation in the planning of complex dynamic produc-
tion and logistics systems leads to secured and more com-
prehensible planning results. Accordingly, existing meth-
ods of mixed integer optimization often use only rather 
simple models to keep computation time within reasona-
ble limits; however, discrete event-oriented simulation 
(DES) can handle much more complex models. 

Models for discrete event-oriented simulation de-
scribe systems already in existence or in the planning 
stages, regarding their operation over time. These models 
can be parameterized well and consider variability of re-
ality by including random events into the models. Dis-
crete event-oriented simulation can also be used to con-
sider nested interactions between resources to be mod-
elled, maintenance actions, and characterization rules ac-
cording to sequences of steps, batch processing, and 
setup. Discrete event-oriented simulation is suitable in 
general and in connection with an input of a concrete pro-
duction program in particular – to consider feasibility of 
concrete production program as well as adherence by 
firms to completion and/or delivery dates promised in ad-
vance, see [3]. 

Discrete event-oriented simulation models are used 
individually or in combination with heuristics in the con-
text of simulation-based optimization to study forward-
time decision and planning problems.  

One approach of discrete event-oriented simulation 
with respect to time-backward decision and planning 
problems has been described in the literature as backward 
simulation and concretizes a reversal of the flow logic of 
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the simulation along with the implemented control and 
priority rule procedures and the resulting backward exe-
cution of the same. 

According to Jain and Chan [11] and Laroque [12], a 
backward simulation can be used to make well-founded 
statements about the target values to be achieved in the 
context of promised delivery dates. Furthermore, back-
ward simulation is an efficient tool for implementing the 
procedures of (simple) backward scheduling, whereby 
both the solution quality of a conventional production 
planning and scheduling mechanism and the execution 
speed of simulation-based scheduling approaches be-
come effective, see [11]. For a validation of the resulting 
solution set, a forward simulation is to be connected fol-
lowing an inversion of the solution set on the time axis 
for the generation of a valid injection planning. Such a 
combination of a forward and backward simulation shall 
be understood as a combined execution in the sense of 
the backward simulation (SimBack). 

2 Research Methodology 
This paper provides a systematic overview of existing ap-
plications of backward-oriented decision and planning 
approaches in production scenarios, following the five-
step approach developed by Denyer and Tranfield [13]. 

2.1 Question Formulation 
Any research requires a decision about its focus. Relating 
to the authors' research interest and their research work 
towards backward simulation, the authors want to ad-
dress the question related to the applications of backward 
scheduling and backward simulation: “What applications 
of backward scheduling and simulation exist in the field 
of production planning and control?”. 

2.2 Selection of Database and Definition of 
Search Strings 

The authors conducted a keyword search in journal and 
conference papers, keyword lists, and abstracts where the 
authors classified their work in backward decision and 
planning approaches, thus excluding works where the 
terms backward scheduling or backward simulation (or 
backward termination or backward planning) were not 
used. As shown in Figure 1, the search strategy consisted 
of two major steps: first, the identification of all possible 
papers using the search terms; then, filtering out all those 
papers that had no relevance in terms of the focus of this 
literature review. 

In the first step, relevant keywords were selected with 
respect to the aim and scope of our literature review.  

 
Figure 1: Search process and total number of papers. 

These keywords can be seen in relation to backward de-
cision-making approaches and in relation to the concrete 
context. The keywords were then constructed as a search 
string with the operators OR and AND between them: 
(("backward scheduling" OR "backward simulation" OR 
"backward termination" OR "backward planning") AND 
(production OR manufacturing OR semiconductor)). 

The keyword semiconductor is most important for the 
solution approach proposed later, as it represents the 
most important research area explored by the authors 
over the last few years. They have focused on developing 
a methodical approach to generate a scheduling by back-
ward simulation considering stochastic model influences 
in semiconductor manufacturing. 

For this study, the authors chose the ACM Digital Li-
brary (ACM-Association for Computing Machinery), 
Scopus, Web of Science, and IEEE Xplore (IEEE – Insti-
tute of Electrical and Electronics Engineers) databases to 
collect scientific papers.  
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Only scientific papers published online that were 

written in English before the end of August 2022 were 
included. Figure 2 shows the growth in the number of rel-
evant publications from the first paper identified in this 
study, from 1982 to 2022. 

2.3 Article Selection and Evaluation 
Denyer and Tranfield [13] note the importance of trans-
parency in conducting systematic reviews, which they 
explain by citing a set of explicit selection criteria that 
they use to assess each study found and see if it does ad-
dress the review question. In a first step, as already de-
scribed in Section 2.2, the authors used a manual abstract 
screening to filter out all papers that were not relevant to 
the focus of this literature review. The accepted 94 papers 
were then screened by full text according to the following 
criteria: full text accessibility and thematic focus on 
backward decision and planning approaches in produc-
tion scenarios. Applying the full text accessibility criterion 
reduces the total to 54 papers from 1989 to 2022, which 
are subsequently processed using a KNIME workflow. 

The KNIME workflow processes abstracts and full 
texts of remaining papers and breaks the text into frag-
ments. These fragments are subsequently combined in 
pairs as N-grams, which are the result of breaking a text 
into fragments and allows for the following in section 2.4, 
that papers and linking studies can be related to each other.  

In this step, the pairwise summary of the individual 
fragments as N-grams offers the opportunity to assess the 
suitability of a paper according to the thematic focus of 
backward decision and planning approaches in produc-
tion scenarios. Accordingly, the N-grams can be specifi-
cally summed up per paper, in this case, for example, 
based on the occurrence of the term backward; a more 
specific consideration of papers based on their numbers 
can be made.  

It should be noted that a low number does not auto-
matically equate to a low relevance of papers for analysis. 

 
Figure 2: Number of publications per year and cumulated 

number of publications. 

 
Figure 3: PRISMA flow diagram. The PRISMA flow diagram 

for the systematic review detailing the database 
searches, the number of abstracts screened, 
and the full texts retrieved. 

The resulting systematization of the term backward* was 
further narrowed by a more specific consideration of ab-
stract and full text, resulting in 27 papers for the meta 
analysis, see Figure 3. 

2.4 Analysis and Synthesis of Results 
The data analysis and synthesis stages of research begin 
with the collection of relevant sources. The aim of anal-
ysis is to break down individual studies into constituent 
parts and describe how each relates to the other. The aim 
of synthesis is to make associations between the parts 
identified in individual studies, see [13]. 

In this step, a deeper content analysis of the 27 iden-
tified core papers and the results of the literature review 
were synthesized to consider similarities and differences 
within and between two highlighted backward decision 
and planning approaches in production scenarios. The re-
sults of this step revealed that 12 papers focused on back-
ward scheduling while 15 papers focused on backward 
simulation. 
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2.5 Evaluation of the Results 
The results of the analysis and synthesis of the 27 core 
papers identified in the literature review are organized 
below in Section 3 according to the formulated research 
questions. 

3 Review Analysis 
Most of the reviewed papers on production scenarios and 
scheduling falls into the (here relevant) category of prob-
lem solving, with the goal of finding an improved solu-
tion approach for a specific production scenario that can 
deal with high cost, time, and quality pressures as well as 
planning uncertainties and/or unforeseen events. 

3.1 Backward Scheduling in Production 
Scenarios 

In the first paper (within this consideration), Agrawal et 
al. [14] propose a solution approach for scheduling the 
production of large assemblies and using a mate-rials re-
quirements planning system with the goal of manufactur-
ing products on time with minimum lead times and low 
production costs. The proposed solution approach in-
cludes an effective lead time evaluation and scheduling 
algorithm. Detailed backward scheduling is used to 
achieve the goal of minimizing lead times. Following up 
on this, Lalas et al. [15] presented a hybrid backward 
scheduling method for discrete manufacturing environ-
ments and evaluated it through several relevant perfor-
mance indicators in a typical textile industry. The method 
applies a set of transformation relationships to transform 
a finite capacity forward scheduling method that can em-
ploy different allocation strategies into its backward 
counterparts. In contrast, Chen et al. [16] propose a solu-
tion to the problem of resource-constrained scheduling 
using particle swarm optimization. Specifically, the au-
thors propose a rule for local delay search and a rule for 
bidirectional scheduling that are designed to facilitate the 
search for a global minimum and, further, a minimum 
amount of time. In the case of the bidirectional planning 
rule for particle swarm optimization, the authors propose 
a combination of forward and backward scheduling to ex-
pand the search range in the solution space and obtain a 
potentially optimal solution.  

Kamaruddin et al. [17] evaluate the effectiveness of 
forward and backward scheduling in a job shop and a cel-
lular layout. They compare the performance of both 
scheduling approaches, finding that backward scheduling 
in the job shop layout has lower average lead time, lower 
delay, and higher labor productivity than forward sched-
uling under all conditions.  

In contrast, forward scheduling in the cellular layout 
has lower average lead time, lower delay, and higher labor 
productivity than forward scheduling under all conditions. 

Chen et al. [18] develop an advanced planning and 
scheduling system to automatically generate production 
schedules for a colour filter factory with multiple lines. 
Both a forward and backward scheduling approach are 
used to balance the workload and control capacity losses 
by considering sequence-dependent setup times. In con-
trast, Hanzálek and Š cha [19] study a lacquer produc-
tion planning problem that is formulated as a resource-
constrained project planning problem with general time 
constraints. They propose a parallel heuristic to solve it. 
This heuristic uses a temporal symmetry mapping that al-
lows for simple construction of a schedule in the back-
ward time orientation. Following up on this and to deal 
with the increasing size of wafers and demand for pro-
duction in semiconductor manufacturing, Wang et al. 
[20] present a periodic scheduling algorithm for single-
arm cluster tools with multitype wafers and shared pro-
cessing modules. They derive analytical expressions for 
schedulability testing using a modified backward sched-
uling strategy. Accordingly, the backward strategy is the 
most widely used and efficient strategy for single-arm 
cluster tools.  

Kalinowski et al. [1] likewise focus on the scheduling 
problem of minimizing lead time but refer to job store 
class systems and production orders arising there. Their 
proposed method supports both forward and backward 
scheduling, using an additional backward pass to calcu-
late the latest possible release date of a given production 
order. In a further paper [21], the authors consider the 
problem of scheduling in flexible manufacturing systems 
considering additional resources and discuss both for-
ward and backward scheduling strategies as well as serial 
and parallel scheduling schemes. Following on from this, 
Suryadhini et al. [22] apply backward scheduling to the 
batch scheduling model they developed to achieve the 
goal of minimizing the expected average lead time for a 
three-stage flow production. The batch scheduling model 
is thereby proposed for such a flow production along with 
an algorithm to solve it.  

Finally, Viady et al. [23] consider a specific use case 
from textile production and aim to minimize the prevail-
ing scheduling problems by reducing bottlenecks at 
workstations and excessive quantities. To solve the prob-
lem, the authors propose the drum-buffer-rope method 
and the Campbell Dudek and Smith (CDS) algorithm, ap-
plying backward scheduling to minimize waiting times 
and control work in process.  
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The result of this research is a reduction in lead times 

and, at the same time, a reduction in delays. In contrast 
and in the context of material requirements planning, 
Seiringer et al. [24] proposed a multistage and multipart 
production system with a rolling planning horizon, ran-
dom customer demands, lead times, and machine setup 
times. The objective of their simheuristic algorithm was 
to optimize total cost; backward scheduling counted as 
one step in this optimization process. The results demon-
strate that the proposed approach is promising for MRP 
systems under uncertainty conditions. 

3.2 Backward Simulation in Production 
Scenarios 

The authors themselves have repeatedly published appli-
cation studies in the field of backward simulation in re-
cent years [2][3]. The presented results based on a real-
world use-case from semiconductor manufacturing show 
in a very practical way, that the methodical approach for 
generating a production schedule by backward simula-
tion works under the given specifics, while stochastic in-
fluences can be considered. Already in Scholl et al. [25], 
the authors describe how they applied a backward-ori-
ented simulation approach in their research on semicon-
ductor manufacturing and identified restrictions and lim-
itations. 

However, the first research (within this considera-
tion) has been done by Jain et al. [26]. The authors de-
scribe an application of advanced concepts of artificial 
intelligence in conjunction with simulation modelling 
and state-of-the-art computer hardware for effective real-
time factory control. This application proves that disci-
plines such as AI and simulation modelling can be used 
synergistically for a practical purpose. The authors em-
ploy the concept of backward simulation to construct re-
liable schedules. 

On the other hand, Ying and Clark [27] proposed a 
deterministic simulation to determine order release times 
in the forward or reverse direction. They developed a bi-
directional algorithm that includes a series of forward and 
reverse simulation runs. A backward simulation run de-
termines potential order release times; if these are all 
nonnegative, the algorithm modifies them to determine 
order release times for the subsequent forward simulation 
run. A final forward simulation run determines order 
completion times. The experimental results show that the 
bidirectional algorithm results in significantly improved 
mean lead time and that it can improve mean delay in 
some cases.  

Having previously introduced in detail the concept of 
backward simulation as a means of determining a re-
quired state based on a desired target state [28], Watson 
et al. [29] address the challenge of order call scheduling 
for a customer-based production facility, which is char-
acterized by the interfacing problems among order pro-
cessing, capacity planning and production scheduling. 
The authors state that conventional order-call planning 
strategies often result in infeasible plans and make it dif-
ficult to manage customer orders. They discuss an ap-
proach called resource scheduling based on queue simu-
lation, which simulates a queue in a manufacturing envi-
ronment by using backward bill-of-material explosion 
logic like material requirements planning except that it 
uses a queue simulation model of the plant. 

The approach proposed by Jain and Chan [11] to de-
termine lot release times based on backward simulation 
has been highly cited in the literature, but it does not lead 
to improvements in a highly complex semiconductor 
manufacturing scenario. In their paper, the authors de-
scribe the approach, its implementation, and limitations 
found in the more complex scenario.  

Chong et al. [30] propose a planning approach that 
includes one forward and one backward run using dis-
crete event simulation. In the first run, bottlenecks are 
identified, and in the second run, strategies to reduce the 
load on those bottlenecks are used. Following up on this, 
Werner et al. [31] focus their research on the aspect of 
optimizing the process flow and calculating exact release 
dates for lots. This five-step procedure combines meth-
ods from scheduling rules, heuristic optimization, and an-
alytical calculations. The basic principles highlighted are 
applicable not only in the semiconductor industry but 
also in other industries.  

In Mejtsky [32], a metaheuristic algorithm for simu-
lation optimization is described and applications of the 
algorithm to traveling salesman and job store scheduling 
problems are presented. To account for due dates, the au-
thor applies backward simulation and a pruning rule. In 
contrast, Zhai et al. [33] presented a special planning 
model based on simulation technique and genetic algo-
rithm for precast production with two critical resources. 
The authors developed three simulation approaches with 
different simulation heuristics and directions, which were 
then compared using their resource and production 
schedules. A satisfactory resource and production sched-
ule was produced by applying the critical precast compo-
nent rule and bidirectional simulation.  
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Moreover, Dori and Borrmann [34] propose a combi-

nation of forward and backward simulation, addressing 
the extension of the discrete-event simulation method to 
include the calculation of buffer times. To determine the 
buffer times, the authors believe that it is important that 
the order of task execution is the same for both forward 
and backward simulation. Therefore, an extension of the 
simulation concept is presented that controls execution 
order. The authors illustrate application by means of a 
comprehensive case study. 

Ju et al. [35] consider the application of backward 
simulation to analyse shipbuilding production and show 
how a shipyard's planning process can be improved. The 
authors' developed planning system, based on backward 
simulation, could be connected to an existing advanced 
planning system for ship construction. A major ad-
vantage of this system is that data input and preparation 
work for running simulations are simple; therefore, com-
pared to forward simulation, backward simulation can be 
performed faster for different conditions and many cases, 
and by selecting best results from those simulations, pro-
duction plans could be improved.  

Finally, Okubo and Mitsuyuki [36] propose a method 
for modelling and representing the complex data sets of 
an entire factory structure. They prove that backward 
simulation is an efficient tool for meeting a given produc-
tion program with guaranteed completion dates at short 
lead times. Moreover, they show that the effectiveness of 
their method and the validity of their production plan are 
confirmed by using actual factory processes and real data. 

4 Potential Solution Approach 
In the semiconductor industry, production systems and 
processes have an above-average level of complexity 
compared to other industries and will continue to gain 
complexity, see [37][38][39]. Recent developments in the 
areas of product diversity, smaller batch sizes and a more 
rapidly changing product range are documented by in-
creased interconnections between plants due to automa-
tion. Possible dependencies relevant for planning result 
from limited plant capacities, stochastic processing, 
changeover, waiting and transport times, preventive 
mainten-ance, setup changes or dynamic time and/or ca-
pacity restrictions in queues or along several production 
stages [9]. 

The manufacturing technologies used in the semicon-
ductor industry are considered particularly sensitive and 
involve complex local control logics.  

Depending on various characteristics defined in ad-
vance, individual production batches do not run through 
linear process sequences, but rather circular process se-
quences and up to 700 individual steps, see [3][39]. Indi-
vidual production batches are sometimes processed sev-
eral times under cleanroom conditions via special equip-
ment (re-entry cycles). Failure to comply with planning 
rules often leads to relevant rejects of intermediate and 
end products that must be compensated for at short notice 
by additional infeeds [3]. 

In order to ensure competitiveness, today's manufac-
turers must develop production plans that keep invento-
ries as low as possible while meeting quality require-
ments and delivering on promised delivery dates. In ad-
dition, they must increase throughput and overall equip-
ment effectiveness. Approaches to achieving these goals 
include optimizing overall planning processes, which re-
quire overarching optimization methods, see [3][11]. 

While application studies on backward simulation 
methods have appeared continuously over the years, 
promising results are described in Laroque et al. [2][3] 
according to a methodological approach to generate a 
scheduling by backward simulation under the specifics of 
the semiconductor industry and considering stochastic 
influences. The application of several simulation models 
and a series of experiments shows that backward simula-
tion can be a powerful tool for operational production 
planning. However, backward simulation methods can be 
very time-consuming and resource-intensive depending 
on the complexity and dimension of the decision-making 
and planning problem under consideration and the inter-
facing issues; thus, highlighting a need for research in 
this area. In addition, the underlying data within the 
methodological approach to generate a scheduling by 
backward simulation remains largely unchanged so far 
(in terms of further optimization). Accordingly, poten-
tials in terms of targeted data generation and evaluation 
as well as application of resulting findings for further op-
timization remain largely unexplored at present. 

Such a targeted data generation and analysis can be 
understood as data farming and should efficiently and ef-
fectively increase the amount of data and furthermore the 
information concerning a decision and planning problem 
to be considered and connecting questions and enable the 
derivation of recommendations for action, see for exam 
[4][40]. According to Lendermann et al. [9], under the 
condition of a valid modelling, huge amounts of data 
have to be generated and processed in the sense of a for-
ward as well as in the sense of a backward execution of a 
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simulation model, in order to be able to make high-qual-
ity statements about the simulated system by a suffi-
ciently careful experiment design (Design of Experi-
ments, DoE). The extension of a backward simulation in 
the sense of a combined design by the approach of data 
farming shall considerably increase the informative 
power of the simulation study to be performed and at the 
same time address the difficulty to include the dynamics 
and stochastic of production systems and processes suf-
ficiently accurately. 

The described combination presents difficulties when 
implementing this procedure repeatedly from scratch for 
a new and/or adaptable planning horizon (in the case of 
additional and at the same time sometimes short-term in-
filtrations). This procedure is associated with a consider-
able expenditure of time, as well as the associated ques-
tion of economic benefit. Moreover, sufficient know-
ledge of methods and/or procedures mentioned is as-
sumed, which means that this procedure is sometimes not 
directly applicable for decision-makers. 

Mönch et al. [41] states that executing concrete factor 
configurations, for example by simulation, can be part of 
the training phase of machine learning methods, see [9]. 
Machine learning as a subfield of artificial intelligence 
describes approaches that enable technical systems to ex-
tract and expand knowledge from training data and/or ex-
perience values (historical data) to solve an existing prob-
lem better than before [42]. 

 

In the semiconductor industry, discrete event simula-
tion models and machine-learning methods are being 
used to develop self-learning algorithms that control and 
monitor production processes.  

This approach is primarily concerned with the devel-
opment of decision and planning algorithms addressing 
only temporally forward decision-making problems, see 
[43][44][45][46][47]. For the investigation of temporally 
backward decision and planning problems in a sense of 
scheduling and sequence planning, little research has 
been conducted so far. A need for research concerning 
ordering concrete production orders emerges for contract 
manufacturing within the semiconductor industry, where 
the development in last decade has been above all regard-
ing an intensification of global enterprise and continuing 
digitalization. These changes have led to an increasing 
demand for semiconductors; therefore, challenges arise 
for the industry. The signs point to growth; therefore, it 
is necessary for companies in the value chain to adjust their 
research and development capacities, production facilities 
and material purchasing to this development, see [48]. 

The authors intend to address the difficulties sur-
rounding the adherence to promised delivery dates and 
other performance indicators by developing a methodical 
approach for generating a scheduling by backward simu-
lation to a target-oriented data generation and evaluation 
based on an approach called data farming. As in previous 
studies [2][3], in contrast to the known research, stochas-
tic influences will be considered to obtain more robust 
schedules.  

 
Figure 4: Solution approach. 
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They intend to use their resulting set of data as part of 

a training phase for machine learning methods, which 
will subsequently provide a powerful tool for scheduling 
and sequencing decisions in semiconductor manufactur-
ing. This will ensure immediate applicability of the de-
veloped solution approach for decision makers and min-
imize substantial amounts of time and resources tied up 
in methods. Figure 4 illustrates the (envisioned) solution 
approach described here. 

This results in various sub-objectives, which will be 
explained in the following:  

4.1 Model Development and Validation 
The developed method will be evaluated on various real-
istic use cases, including a model of a semiconductor in-
dustry. Specifically, it is planned to select at least one re-
alistic system for evaluating the method's ability to emu-
late dynamic aspects of semiconductor manufacturing – 
for example, stochastic processing, changeover, waiting 
and transport times, control, and priority control proce-
dures (also in the sense of characteristic re-entry cycles) or 
time or capacity constraints in queues or along several pro-
duction stages. For example, this could be one of the Sem-
iconductor Manufacturing Testbeds (SMT2020), see [49]. 

4.2 Data Generation and Analysis 
A comprehensive mapping of the impact space corre-
sponding to the system under consideration is required to 
generate sufficient data for the method of data farming 
and the combined execution of a simulation model by 
means of forward and backward simulation described in 
the previous section. This raises a variety of issues with 
respect to the scope and relevance of individual system, 
input, and result data for further use. 

First, it has to be conceptually investigated which sys-
tem data are of importance for the later development and 
implementation of a decision support based on machine 
learning in the mentioned problem space. This can be fol-
lowed by a characterization of relationships between in-
put and result data. Finally, the storage of mappings with 
respect to a statement regarding the adherence to prom-
ised delivery dates and further selected performance met-
rics is to be performed. 

As described in the previous paragraph, concrete pa-
rameter configurations using simulation models and the 
amount of data generated by data farming address the 
challenge in production planning and control to be able 
to fall back on a comprehensive data stock and a suffi-
cient quality of the same.  

Accordingly, an extensive experimental design is 
necessary for each model to increase the amount of data 
efficiently and effectively and furthermore the infor-
mation concerning the system under consideration ac-
cording to its complexity and dimensionality. In view of 
this, suitable methods from statistical experimental de-
sign must be reviewed and selected and adapted for ap-
plication in this work. 

4.3 Technical Implementation 
The objective of this sub-objective is to develop and im-
plement a decision support system based on machine 
learning for operational production planning. To achieve 
this objective, the sub-objective first deals with the tech-
nical implementation of data generation in the context of 
a targeted data generation by the method of data farming 
and simultaneously focuses on data management as well 
as analysis and evaluation of resulting data. For this pur-
pose, suitable simulation tools for combined execution of 
simulation model and connecting experiment design 
must be selected in advance. Following on from this, suit-
able procedures such as extensive data analysis and eval-
uation and machine learning must also be researched, 
adapted, and embedded in uniform framework. 

The prototypical implementation of the machine 
learning based decision support for a use case from the 
semiconductor industry shall test different methods of 
ma-chine learning (especially methods of supervised and 
reinforcement learning) regarding the business benefit 
and prove the feasibility in principle of the elaborated 
concept. 

4.4 Transfer Learning 
This sub-objective addresses the difficulty to train the 
machine learning based decision support and the under-
lying predictive model from scratch with new industry 
and problem specific data (simulation and real data) as 
soon as input data change significantly and/or similar use 
cases are to be considered. The necessity of model adap-
tation as well as new model validation, linking data gen-
eration by the method of data farming and data analysis 
and the resulting time and resource requirements again 
highlight a considerable need for research. 

Transfer learning as a method of deep learning deals 
with approaches based on so-called convolutional neural 
networks (CNN) to use the model trained on one use case 
as input for another (related) use case. Transfer learning 
can thus result in a reduction of the required amount of 
data (training data or experience) and the time needed for 
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the training phase of machine learning methods, or an in-
crease in the predictive performance and faster conver-
gence of the model, see [50][51][52][53]. 

This sub-objective tests the method of transfer learn-
ing in the context of the concept elaborated and a modi-
fication of the considered use case from the semiconduc-
tor industry. By successfully implementing the method, 
possibilities arise to prove not only that it is feasible, but 
also that it has economic benefit compared to conven-
tional production planning and scheduling mechanisms. 
Accordingly, once prediction or planning models have 
been generated, they can be adapted to related applica-
tions by using corresponding data sets. 

5 Conclusion 
Simulation requires effort and time; even if a preexisting 
model just needs to be updated with new parameters, 
there is still the runtime required to run the simulation, 
see [54]. Today's manufacturers must develop produc-
tion plans that keep inventories as low as possible while 
meeting quality requirements and delivering on promised 
delivery dates. One way to address this objective is by 
optimizing overall planning processes, which require 
overarching optimization methods, see [3][11]. The pur-
pose of this paper was to provide a systematic literature 
review on applications of backward decision and plan-
ning approaches in production scenarios.  

The present work demonstrates that backward deci-
sion and planning approaches already are of high im-
portance within production scenarios. There are differ-
ences between the industries; semiconductor production 
is often mentioned in connection with the method of 
backward simulation; accordingly, some application 
studies can be found in this industry. However, backward 
scheduling and backward simulation methods can be 
time-consuming and resource-intensive depending on the 
complexity and dimension of decision making and plan-
ning problems. Accordingly, the authors have identified 
a need for research in this area. In addition, cur-rent 
methodological approaches to generate scheduling by 
backward simulation remain largely unchanged so far (in 
terms of further optimization). Thus, potentials for tar-
geted data generation and evaluation as well as applica-
tion of resulting findings for optimization remain largely 
unexplored at present. 

The proposed solution approach is intended to help 
exploit the findings highlighted in the systematic litera-
ture review and to address existing challenges related to 
the implementation of backward decision and planning 
approaches.  

Furthermore, the proposed solution approach is in-
tended to further develop the backward simulation 
method towards a targeted data generation and analysis 
based on the data farming approach. The use of the re-
sulting set of data as part of the training phase of machine 
learning methods and thus the provision of a powerful 
tool (application phase) as an operational decision sup-
port for scheduling and sequencing in the semiconductor 
industry shall subsequently ensure the applicability of the 
developed solution approach for immediate decision 
makers and minimize a considerable time and resource 
requirement linked to the methods. 
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