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Abstract.  An agile production network enables com-
panies to respond quickly and economically efficiently 
to expected and unexpected market changes. In this 
context, the complexity of designing agile production 
networks is a major challenge. This paper proposes the 
integration of simulation and machine learning (ML) in 
a single methodology to manage and understand the 
complexity of designing agile production networks. Ac-
cordingly, a brief introduction to the design of agile pro-
duction networks and related work will be provided. 
On this basis, the authors explain the integration and 
functionalities of simulation and ML. The paper pro-
vides a ground for further developments and shows 
further potentials as part of a design methodology uti-
lizing simulation and ML. 

Introduction 

Agility as a concept has existed in the systems theory of 
organizations since the 1950s [1]. In recent decades, the 
term agility has been coined by agile software develop-
ment. Currently, agility in the context of production net-
works is seen as the answer to rapid and disruptive 
change [2]. Consequently, agility and the ability to 
change have become decisive keys and competitive fac-
tors [3]. 

The challenge of agile production networks is the com-
plexity of their design. In detail, it requires the consider-
ation of all relevant changes in influencing factors and 
the analysis of effects on the network [2].  

Due to the size and interconnectedness of the entire 
production network, the number and variety of products 
and the depth of value-added, inadmissible simplifica-
tions in the network design are selected by the human 
preference [4, 5]. As a result, only a few network config-
urations emerge, which are often inferior to the network 
variants that could be identified in a more-advanced de-
sign process [6]. As a solution, machine learning (ML) 
can be used to generate network design variants that de-
viate from human-known patterns [7]. 

1 Fundamentals 
1.1 Design of agile productions networks 
A production network is a network consisting of at least 
two production sites. The production sites are assigned to 
a single company in terms of their value creation. Supply 
Chain Networks (SCN), which represent external net-
works with locations of different companies, can be dis-
tinguished from this. Complementary, agility in the con-
text of production networks describes a system that can 
quickly and economically identify and strategically re-
spond to both expected and unexpected changes in its en-
vironment. The design requires the consideration of all 
relevant changes in influencing factors, the analysis of 
effects on the network, and derivation and implementa-
tion of required actions [1]. 

1.2 Methods of simulation modelling 
A method of simulation modeling describes a general 
framework for mapping a real-world system to its model. 
Modeling methods in simulation can be divided into tra-
ditional (e.g., discrete event simulation) and less conven-
tional methods (e.g., system dynamics or agent-based 
modeling) [8, 9]. Discrete event simulation (DES) pro-
vides an intermediate level of abstraction and models a 
process as a s series of discrete events.  
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DES focuses on operations of individual entities as a 

system and visualizes them as a process flowchart. Sys-
tem dynamics (SD) operates at a high level of abstraction 
and is focused on the overall operation of networks rather 
than on the individual behavior of entities [8]. Agent-
based models (ABM) are made up of self-directed agents 
that follow predefined rules to achieve their objectives 
whilst interacting with each other and their environment. 
The system behavior emerges as a summary of the indi-
vidual actions of agents and is applicable for both low 
and high level of abstraction [9]. 

1.3 Machine learning techniques 
ML is the ability of computer programs to learn 
knowledge and strategies through parameter optimiza-
tion. ML is divided into supervised learning (SL), unsu-
pervised learning (UL), and reinforcement learning (RL), 
which are distinguished by the nature of the problem and 
the learning. In SL, a system is trained to produce a spe-
cific output given a specific input. UL is used to find pat-
terns in input data without the learning system knowing 
target values or rewards. RL is used to train and learn a 
strategy as an agent to maximize a specific reward [10]. 
The learning agent interacts with an environment that 
represents the system to be optimized. The agent ob-
serves the environment, performs actions in it, and re-
ceives rewards or evaluations from the environment for 
these actions [11]. 

2 Related Work 
In the literature, several approaches have been presented 
focusing explicitly on the design, evaluation, and optimi-
zation of production networks. Available approaches can 
be structured according to their process-related and ana-
lytical complexity into process models, mathematical op-
timization models, combined approaches (which include 
a process model and a mathematical optimization model), 
and approaches in general belonging to the field of multi-
attribute decision making [4]. Approaches that explicitly 
focus on simulation and ML are, therefore, increasingly 
found in the research field of SCN. The following articles 
provide insight in the integration of simulation and ML: 
• Aghaie and Heidary (2018) modeled a multi-period 

stochastic supply chain with uncertain demand and 
supplier disruptions. The objective was to determine 
the best behavior of a risk-sensitive retailer with re-
spect to forward and option contracts during multi-
ple contract periods.                          .  

For this purpose, an agent-based discrete event sim-
ulation approach was developed to simulate the sup-
ply chain and its transactions between retailers and 
unreliable suppliers. As a complement, RL was used 
to optimize the simulation procedure. A comparison 
between the numerical results and a genetic algorithm 
showed the significant efficiency of the proposed RL 
approach [12]. 

• Kemmer et al. (2018) investigated the performance 
of RL agents in a supply chain optimization environ-
ment. The environment was modeled as a Markov de-
cision process, in which decisions must be made at 
each step about how many products to produce in a 
factory and how many products to ship to different 
warehouses. The results demonstrated that RL agents 
are able to understand simple market trends, regulate 
production levels, and efficiently allocate inventory 
in a simple model scenario [13]. 

• Stockheim et al. (2003) present a decentralized ap-
proach to SCM based on RL. The approach consists 
of loosely coupled yield-optimizing planning agents 
that attempt to learn an optimal acceptance strategy 
for sequencing production orders. In a performance 
comparison, the RL solution was shown to outper-
form the simple acceptance heuristic [14]. 

3 Integration into a Design 
Methodology 

The question how simulation and ML can be integrated 
in a common design methodology has to be answered in 
three steps. First, it must be determined, how simulation 
and ML can be integrated in a common use case. Based on 
this, it must be clarified which modeling method best rep-
resents a production network. Third, it must be deter-
mined, which specific ML technique can be combined 
with the selected simulation method to solve the specific 
challenges of the design case. 

The common use of simulation and ML can be imple-
mented as integration of simulation into ML (SIM-as-
sisted ML) or as integration of ML into simulation (ML-
assisted SIM). According to the German Engineers As-
sociation VDI, Simulation-assisted ML is classified as 
category D and ML-assisted Simulation as category C of 
a hierarchical combination [15]. The simulation-assisted 
ML provides an additional source of information for the 
ML beyond the usually available data.  
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Typical functionalities are extending training data, 

defining parts of the hypothesis approach in terms of em-
pirical functions, driving training algorithms in genera-
tive adversarial networks, or testing the final hypothesis 
for scientific consistency. The ML-assisted simulation is 
usually used to support the solution process or to detect 
patterns in simulation data. Typical functionalities are re-
duction of model order and development of surrogate 
models that provide approximate but simpler solutions, 
automatic inference of an intelligent choice of input pa-
rameters for a next simulation run, a partially trainable 
solver for different equations, or identification of patterns 
in simulation results for scientific discovery [16]. 

The selection of a modeling method is conducted by 
analyzing real-world examples and specific case studies. 
In this context, the selection of a suitable abstraction level 
for the model and the identification of entities involved as 
well as their properties and relationships is crucial [17]. 
Production networks have similar properties like SCNs 
[2]. However, SC entities operate with different con-
straints and objectives. Each decision made by any entity 
impacts other partners. Thus, improving the performance 
depends on all entities’ willingness to collaborate and 
their ability to coordinate their activities. For this reason, 
SCNs and production networks can also be defined as a 
complex adaptive system (CAS). A CAS is a dynamic 
network where many agents simultaneously and continu-
ously react to the actions of other agents [18]. An ap-
proach to model CAS is ABM, describing systems as be-
ing made up of self-directed agents. These follow rules to 
achieve their objectives whilst interacting among each 
other and with their environment. This allows for inves-
tigating the emergent behavior of a system [19]. 

In addition, an appropriate ML technique must be se-
lected for the use in a design methodology. For this selec-
tion, the specific challenges of the design case provide 
useful indications. In the case of agile production net-
works, these include the lack of transparency about exter-
nal and internal influencing factors, an undifferentiated 
assessment of their effect on the factory, low validity and 
traceability of the selection of situation-specific measures 
to increase agility, and the complex estimation of costs 
and benefits associated with agility measures. Conse-
quently, there is a lack of a decision-making basis to take 
measures that make a network adaptable for the specific-
situation [2]. A ML technique for this kind of decision-
making problems is RL.  

 
 

 

Figure 1: The design methodology is a cycle consisting of 
three phases. 

For RL, an implicit part of the observation is whether the 
outcome state is good or bad relative to the agent’s per-
formance metric. On these observations, the agents can 
generate optimal plans that determine the proper action 
to take in any state [11]. 

Based on the proven applicability of RL and ABM in 
the application field of production networks, a superordi-
nate process model for a design methodology is visual-
ized in Figure 1 and presented below. 

The starting point (Phase 1) of the design methodol-
ogy is the modeling of the existing production network. 
In this phase, due to changes in the market and within the 
company, changes in the production network must be 
continually monitored and included in the modelling 
state. In Phase 2, the generation of network variants with 
suitable technical models (e.g., ML technqiues) is re-
quired. Here it is necessary to cover the characteristics of 
agility enabler in production network [20]. Finally, a val-
idation and verification (V&V) of the network variants is 
carried out by applying simulation. A suitable V&V sup-
port the process of model creation, as well as the use of 
the model and the evaluation of the simulation results 
[21]. As solution objective, the most performing network 
variant is selected and integrated into the network mod-
eling as the current state of the production network. 

4 Conclusion and Outlook 
This short paper presents how simulation and machine 
learning (ML) can be used and integrated in a common 
design methodology. By combining agent-based models 
(ABM) with Reinforcement Learning (RL), an approach 
to manage and understand the complexity in the designing 
of agile production networks could be identified.  
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With ABM, interactions in the production network 

can be investigated, the system behavior can be under-
stood and the entire complexity of a production network 
can be captured. Consequently, it is possible to under-
stand how individual network adjustments can affect the 
entire production network. Based on this, RL algorithms 
are used to train the ABM agents for network design var-
iants that are more independent of human preferences. 
Through the RL training, the entire design process includ-
ing all possible network variants is captured. As a result, 
the agents can create resilient and optimal design deci-
sions that determine the correct action in each state of the 
production network. For further research, it remains to be 
investigated which specific level of modeling abstraction 
is sufficient for production networks. In addition, other 
modeling methods such as Petri Nets should be investi-
gated. Finally, it must be determined which integration 
form of simulation and ML provides more advantages for 
the use case and which potential target values should be 
trained with RL. 
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