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Abstract. The Simulation-Based Control (SBC) ap-
proach and the Task-Oriented Control (TOC) devel-
opment, which have already been investigated for
individual articulated robots, is extended to teams
of articulated robots, hereinafter also referred to as
Multi-Robot System (MRS).
The basics of SBC, TOC and client-server approach
for vendor-independent robot programming are intro-
duced. Possible interactions in anMRS are then analyzed
and classified, and a TOC description of interactions is
developed. The TOC description is based on reusable,
atomic tasks that can be aggregated sequentially and hi-
erarchically via interfaces.
For three interaction classes, the TOC specification and
its transformation into executable robot commands us-
ing a client-server based robot midleware is discussed.
The control dynamics is described with the Discrete
Event System Specification (DEVS) and represented
using DEVS diagrams.

Introduction

Robots have been established in industry for decades

as powerful and flexible tools. With new areas of ap-

plication, as defined in the context of Industry 4.0, the

requirements for the efficient development of robot con-

trols are growing. The methods of Rapid Control Proto-

typing (RCP) can make a significant contribution here

(Abel and Bollig [1]).

RCP requires a consistent process model, an end-to-

end tool chain from the design phase through to opera-

tion, and the consistent use of modeling and simulation

methods to continuously verify development steps. Al-

most all robot manufacturers offer RCP-based develop-

ment environments. However, these are manufacturer-

specific and only support their own robots.

The methodological and software differences make

it difficult to set up Multi-Robot Systems (MRSs), con-

sisting of robots from different manufacturers.

Another method for the efficient development of

robot controls are high-level specifications, such as the

Task-Oriented Control (TOC) approach (Siciliano [2]).

The principle of TOC is to break down complex prob-

lems into a set of reusable, atomic tasks that can be

aggregated sequentially or hierarchically via interfaces.

To execute a TOC, the tasks must be translated into ex-

ecutable robot commands.

This paper proposes a vendor-independent RCP ap-

proach for robotic control development. We build on

the Simulation-Based Control (SBC) approach intro-

duced by Maletzki [3] for Single-Robot Systems (SRS)

and extend its application to MRS.

The SBC approach corresponds to the RCP method

and enables manufacturer-indepent end-to-end develop-

ment from the control design phase through to the op-

erational use. Furthermore, the SBC approach defines

a framework for practical implementation. A simula-

tion environment with real-time process interface and

client-server based robot midleware form its core.

In contrast to an SRS, the interactions between

robots must be described when controlling an MRS.

For this purpose, interactions between articulated arm

robots are analyzed and classified. We examine how

the interactions can be specified and processed using

reusable tasks. To do this, we define a case study and

discuss for three interaction types the TOC specification

and its transformation into executable robot commands.

We use a Discrete Event System Specification

(DEVS) based modeling and simulation environment

and describe the tasks and their transformation into

robot code using DEVS diagrams. Details on the DEVS

environment can be found in Freymann [4].
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1 Fundamentals
In this section, the basics of the SBC and TOC approach

are presented and some methods for manufacturer-

independent control programming of MRS are dis-

cussed.

1.1 Simulation Based Control Approach

The SBC approach is a methodology for control devel-

opment and defines a framework for practical control

implementations (Maletzki et al. [5]).It supports a con-

tinuous simulation-based development process from the

early specification of a control logic through to the op-

erational use of a control system on the basis of an in-

tegrated tool chain. A schematic representation of the

SBC approach is shown in Figure 1.

A Simulation Model (SM) developed in the design

phase is extended step by step to a Control Software

(CS) and continuously tested by simulation during the

development process. This approach eliminates the

need to reimplement simulation code in control code. In

this way, errors are avoided, development time is saved

and overall development costs are reduced. The con-

sistent testing of development steps with SM makes it

possible to identify and correct errors at an early stage.

As shown in Figure 1, it is necessary to consistently

distinguish between the Control Model (CM) with the

control logic and the Process Model (PM) with the im-

age of the real process as early as possible during the

development. The operational mode requires an inter-

face to the real process, which records measured sen-

sor values and conversely sends actuator commands to

the components of the real process. For this reason, an

Interface Model (IM) must be developed for the opera-

tional phase. This IM should support simulative testing

with a robot simulation and at the same time act as an

interface to the real process. In contrast to most other

RCP approaches, the PM remains a component in the

control system even in the operating mode. This en-

ables the calculation of non-measurable or poorly mea-

surable process variables and the realization of observer

concepts.

1.2 Task-oriented Control Design

TOC is an established concept for control design (Si-

ciliano et al. [2]) and is used for programming SRS in

many applications [3, 6]. The procedure for creating a

TOC corresponds to the human way of thinking when

solving complex problems.
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Figure 1: Schematic representation of the SBC approach

The basic principle is the representation of control

problems by a sequence of tasks. Tasks are usually in-

dependent work steps. The tasks should be formulated

universally in order to be able to represent different con-

trol problems by linking tasks in different ways. Tasks

can be linked purely sequentially, conditionally or in

loops. Aggregated tasks can be created by links on one

level or in hierarchies. The Closure Under Coupling
principle according to Zeigler et al. [7] should apply to

both atomic and aggregated tasks, i.e. a task composed

of subtasks cannot be distinguished from an equivalent

atomic task. This property is the basis for modulariz-

ing task-based descriptions and implementing reusable

tasks. In addition, solving a problem may require pro-

cessing tasks in parallel.

According to Figure 2, a task-based control is spec-

ified within the CM. Such a control specification is not

directly executable because tasks are an abstract de-

scription of work steps. A task only describes the what
but not the how or with what something is to be im-

plemented. A transformation method is needed to ex-

ecute tasks. It transforms tasks into control commands

for real devices using a world model. The result is an

executable control code in a language specific to the ap-

plication. In robotics, for example, this can be a control

code in a manufacturer-specific robot programming lan-

guage. In the SBC approach, the PM corresponds to the

world model and the IM to the transformation method.

1.3 Vendor-independent Control
Development

In addition to different types of robots, which are

optimised for certain areas of application in terms of

hardware, the software solutions for programming

robots also differ greatly and are often manufacturer-

specific.
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Implementation of TOC within the SBC approach

Manufacturers are creating their own self-contained

ecosystem that exclusively supports the robots, sensors

and actuators of their own brand. The robots are mostly

programmed using a specific p rogramming language.

Therefore, Robot Oriented Middleware from different

manufacturers is generally incompatible.

Manufacturer-specific s oftware a nd h ardware sys-

tems complicate the development of robot applications,

especially for MRS. Once developed, control solu-

tions cannot simply be ported to robot systems from

other manufacturers, even if the robots have almost the

same functionality. Long-standing efforts to standard-

ize robot programming languages have failed.

An alternative approach for robot programming is

based on the client-server model, as shown schemat-

ically in Figure 3. Here, the robot controller acts as

a server and gives a client access to all manufacturer-

specific services o f the r obot. C lient and server com-

municate via interfaces (Serial, Ethernet, etc.) of the

robot controller. Control commands from the client are

translated into a data word and then transmitted to an in-

terpreter via a data connection. The interpreter is devel-

oped in the robot manufacturer’s specific language and

executed on the robot controller. The interpreter exe-

cutes received data words and sends back data words to

the client. In this way, sensor data and robot movement

commands are communicated and executed.

Based on this concept, Deatcu et. al [8] developed

a toolbox in MATLAB (client side) and interpreter

(server) for KUKA, Kawasaki and virtual robots. Phys-

ical and virtual robots from both manufacturers can

be programmed, tested and deployed using a uniform

MATLAB-based command set. The integration of

physical or virtual robots from other manufacturers

only requires the implementation of an interpreter in

their specific language.

With the virtual robots, the toolbox comprehen-

sively supports the requirements of the RCP with regard

to an end-to-end software chain and the use of simula-

tion models from the early planning phase through to

operation.

USER

ABSTRACT
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ROBOT 

KRL
Interpreter

KAWASAKI
ROBOT 

AS
Interpreter

ABB-Robotics
ROBOT 

RAPID
Interpreter

CLIENT
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Virtual
ROBOT

Virtual
Interpreter
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Robot control based on client-server approach

2 Interaction in MRS and its
Implementation Within the
SBC Approach

In this section, interactions of joined-arm robots in an

MRS are analyzed based on the interaction classes for-

mulated by Lüth [9].

Subsequently, it is examined how the interaction

type coordination can be realized within the SBC ap-

proach. According to section 1.2, the task specification,

the WHAT, is done in the CM layer and the task trans-

formation, the HOW and WHO, in the PM layer. We

start our consideration with the task transformation and

then devote ourselves to the task specification.

2.1 Interaction Classes

According to Lüth [9], the interactions of industrial

robots in MRS can be divided into six classes. For better

illustration, these are discussed below using the exam-

ple of a transport problem.

Figure 4 shows the structure of the transport prob-

lem using an SRS. Parts are transported from an Input

Buffer (IB) to an Output Buffer (OB). Based on this

basic structure, Figure 5 shows derived system struc-

tures for MRS according to the six interaction classes

by Lüth [9].

Class 0: The structure in Figure 4 shows an SRS

that does not involve any interaction. The robot R1 can

be understood as a server S with the capacity of one. It

has to move one part at a time from the IB to the OB.
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(interaction class 0)

Class 1: The MRS consists of two robots (R1, R2)

with separate workspaces. Both robots have identical

tools and capabilities.

The overall task consists of the transport of parts

from the IB to the OB. Due to the separate workspaces

and the same identity of the robots, they do not have to

interact to solve their partial task.

Class 2: The structure is analogous to class 1, but

each workspace contains a different part type, and

robot R2 is adapted to the new part type. Due to the

separate workspaces, the robots do not have to interact

and do not need to be coordinated. In contrast to class

1, the robots are not mutually interchangeable.

Class 3: The robots are no longer spatially sep-

arated from each other. Their workspaces overlap,

making it necessary to coordinate their movements in

order to avoid collisions. Coordination requires an

exchange of information, a communication.

Class 4: Another part type is added, which can

only be moved by both robots together. This requires

cooperation and coordination between the robots. The

timing of the cooperation must be planned in order to

avoid unnecessary waiting times for the robots.

Class 5: Each robot can handle the other robot’s

part types to support the partner in an overload situ-

ation. There follows no principally new requirement

regarding communication and coordination.

Class 6: There is a third type of part to be trans-

ported that cannot be handled with the standard config-

uration of the two robots R1 and R2. This results in the

need for a new interaction, referred to here as dynamic
function expansion. This can be done by changing tools

or temporarily integrating a specific robot R3.
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Illustration of the six interaction classes according
to Lüth [9] using the transportation problem.

2.2 Task Transformation on the PM Layer

Interaction class 3 requires temporal coordination of

robots in order to avoid collisions in the shared

workspace. Figure 6 shows two variants for bidirec-

tional communication of robot model components on

the PM layer. In Figure 6a, the communication is solved

on the basis of direct couplings between the robot com-

ponents. The structure created by the couplings resem-

bles a peer-to-peer (P2P) network as is known from the

field of network technology. The effort required to cou-

ple components with each other in this way increases

greatly with their number.

For this reason, the introduction of a new compo-

nent, called Robot-Team (RT), is proposed in Figure 6b.

This serves as a middleman between the robot compo-

nents. The number of input and output ports required

for communication is reduced to one input and output

port per robot component R. The structure of a robot

component R is independent of the number of compo-

nents communicating with each other. RT stores all in-

formation relevant for team coordination. This signifi-

cantly reduces the complexity of modeling at PM level.
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Two variants for modeling communication on the
PM layer.

2.3 Task Specification on the CM Layer and
Relationship to the PM Layer

Figure 7 shows the basic implementation of a TOC

within the SBC for interaction classes 1 to 3 accord-

ing to the problem illustrated in Figure 5. The task

sequences of the two robots (R1, R2) are specified as

concurrent processes on the CM layer.

As already described, the task transformation takes

place in the PM layer. The notation Ri.STS and

Ri.CMD stands for coupling relationships between the

CM and PM layers to exchange control commands

(CMD) and status information (STS).

The interfaces to the robot middleware are imple-

mented in the IM layer (INTF1 and INTF2). The RTC

component in the IM layer stands for Real Time Clock
and realizes the real-time synchronization of the execut-

ing simulator required during the operational phase.

Due to the separate workspaces, the robots can per-

form their tasks independently of each other in the case

of interaction class 1 and 2. There is no need for inter-

action between the robots. The Lock and UnLock tasks

on the CM layer and the RT component on the PM layer

are not required.

A task sequence starts with the part identification

task IdPrT, which provides position parameters (Pos).

The Pos are passed to the task Move, which is followed

by the task PickPrt to pick up a part, and so on.

In the case of interaction class 3, IB is a common

workspace for both robots. It must be ensured that the

robots do not move into the IB at the same time. To

map a mutual exclusion (mutex) during the execution

of the Move(IB) task for both robots, the tasks Lock and

UnLock are introduced. These specify the start and end

of a task coordination.

CS

PM

IM
INTF1

R1

RTC

CM

INTF2

R2

R1

RT

R1.STS R1.CMD R2.STS R2.CMD

Mutex

Lock(IB)

Move(SPos)

Move(Pos)

PickPrt

PlacePrt

Move(OB)

UnLock(IB)

Move(SPos)

R2

Lock(IB)

Move(SPos)

Move(Pos)

PickPrt

Move(SPos)

Move(OB)

UnLock(IB)

Pos=IdPrt(IB,A) Pos=IdPrt(IB,B)

PlacePrt

Concept of a TOC within the SBC approach by the
example of interaction class 3 (for classes 1 and 2,
the Lock and UnLock tasks as well as the RT
component are omitted).

The resulting coordination of the two robots is im-

plemented by the RT Mutex component. Mutex can

be implemented using inter-process communication ac-

cording to Tanenbaum and Bos [10].

When the task Lock(IB) is called, a resource with the

name IB is reserved by the respective robot and blocked

for others. The information about which robot owns

which resource is stored in the RT component and ex-

changed via the coupling relationships between RT and

the robot components R1 and R2. The robot that exe-

cutes the Lock task first becomes the owner. Another

robot cannot initially complete the Lock task.

However, a robot’s wish to own the resource next

can already be saved in RT. The reservation only

becomes valid when the resource is released again

with the UnLock task. If a reservation has already

been made, ownership is immediately transferred to

the reserving robot. Before a robot that is in ownership

of a resource releases it again, it should leave the

critical workspace. The Move(SPos) task is defined for

this purpose, which describes the movement to a safe

position.
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3 DEVS-based Implementation
of a TOC Within the SBC
Approach

This section discusses the implementation of TOC ac-

cording within the SBC approach using a DEVS simu-

lation environment with a real-time process interface. It

starts with the definition of tasks for the CM layer using

DEVS. Then, we consider a DEVS-based transforma-

tion of tasks without interactions as well as a DEVS-

based implementation of the interface to the robot mid-

dleware.

Finally, a DEVS-based transformation of tasks with

interactions is described using the example of inter-

action type Coordination (class 3). The DEVS spec-

ifications are presented using extended DEVS dia-

grams. The practical implementation was carried out

using DEVS-RCP-V2, a MATLAB-based DEVS envi-

ronment. Details on the extended DEVS diagrams and

on DEVS-RCP-V2 can be found in Freymann [4].

3.1 Specification of Tasks for the CM Layer

Figure 7 shows the task sequences of the case study on

the transportation problem for interaction classes 1 to

3. With the exception of the task IdPrt for part identi-

fication, all other tasks can be defined according to the

uniform pattern in Figure 8. The ports STS and CMD
form the interface to the PM layer (see Figure 7)), while

the ports BEG and NXT are used to link tasks in the CM

layer. The task pattern defines the two phases Passive
and Active.

In DEVS diagrams, phases are values of the state

variable phase, which are represented with a box. These

state values are often referred to as main states. Each

state has a dwell time, including zero and infinity. The

dwell time is notated with @Variable or @Value.

In the example in Figure 8, the initial phase is

Passive. An external event ’next’ at the input port

BEG (BEG?’next’) causes a change to the phase Active
and the state transition σ = 0 schedules an immediate

internal event. Internal events can cause state changes

and trigger output events. In this case, an output

event (tid, p1, p2) at port CMD (CMD!(tid,p1,p2)) is

generated. Parameter tid encodes the ID of the current

task and the identifiers p1, p2 are placeholders for

specific task parameters. In the Move task, for example,

the position to be approached is coded in p1.

Due to the state transition σ = ∞, the task remains

in the phase Active until the next external event. When

an external event ’done’ at the port STS (STS?’done’)
occurs, the task changes to phase Passive and triggers

immediately an internal event due to σ = 0. As a re-

sult, an output event ’next’ is generated at port NXT

(NXT!’next’) and a follow-up task is activated. Due to

the state transition σ = ∞, the current task remains in

phase Passive until a new external event BEG?’next’
occurs.

TaskName(cid,p1,...,pn)

phase: {'Active','Passive'} = 'Passive'
p1,p2:{Strings}
tid: =tid

: {0, }= 

BEG:{'next'} NXT:{'next'}

STS:{'done'} CMD:{(tid,p1,p2)}

Passive
@

Active
@

CMD!(tid,p1,p2)/{ = }

BEG?'next'/{ =0}

NXT!'next'/{ = }

STS?'done'/{ =0}

Task(tid,p1,p2)

Active
@

DEVS specification of a general task pattern

3.2 Transformation of Tasks Without
Interactions

The task transformation takes place by the robot com-

ponents R1 and R2 in the PM layer (see Figure 7).

Both components have an identical behavior. Figure 9

shows the DEVS specification for translating the task

sequences of the case study for classes 1 and 2. It de-

fines the three phases Passive, Error and Active, with

the initial phase Passive. If component R is to execute

a task, it must be in the phase Passive.

The task to be executed is received as an exter-

nal event (tid, p1, p2) via the input port CM_CMD

(CM_CMD?(tid,p1,p2)) and an internal event is imme-

diately scheduled with σ = 0. The external event codes

a task ID in tid and task specific values in p1 and p2.

The task ID decides which state transition, and there-

fore which task transformation, is executed.

The part identification task IdPrt is realized with a

table, which defines part types and position coordinates.

The part is selected depending on the task parameters

p1 and p2, the coordinates are assigned to the state

variable position, and the state variable sts=’done’ is

set.
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If no part can be identified, sts=’none’ is set. As

there is no communication with the real process, there

is a return to the phase Passive. The scheduled internal

event triggers an output event (CM_STS!sts) that sends

the value of the state variable sts to the CM layer via

the port CM_STS. The state transition σ = ∞ schedules

no further internal event, the component R is back in its

initial phase, and ready to execute a new task again.

R

phase: {'Active','Passive','Error'} = 'Passive'
: {0, }= 

tid:{1,2,3,4}=
p1,p2:{Strings}=
sts:{'done','none'}=
position:{(x,y,z)|x,y,z }=( , , )
cmd:{Strings,position}=

CM_CMD:{(tid,p1,p2)} CM_STS:{'done','none'}

IM_STS:{'done','error'} IM_CMD:{Strings,position}

Passive
@

CM_CMD?(tid,p1,p2)/{ =0}

Active
@

CM_STS!sts/{ = }

Error
@

1

@[tid==1]/{cmd='CloseG'} 

@[tid==2]/{cmd='OpenG'} 

@[tid==4] 

1

1

IM_STS?'done'/{sts='done', =0}

#PickPrt

#PlacePrt

#Move(p1)

@[tid==3]
/{[position,sts]=LookUpTbl1(p1,p2)} 

#Pos = IdPrt(p1,p2)

IM_CMD!cmd/{ = }

2

1
2

2

2

@[p1=='Pos']/{cmd=position} 
1

2/{cmd=LookUpTbl2(p1)} 

IM_STS?'error'

DEVS specification of the robot components R1 and
R2 for translating the task sequences of the case
study for classes 1 and 2

The execution of the tasks PickPrt, PlacePrt and

Move always leads to a transition to the phase Active.

However, before this, the state transition caused by

the external event (CM_CMD?(tid,p1,p2)) sets the state

variable cmd to the task-specific value and schedules an

internal event with σ=0.

For the task Move, a distinction is made between

two transition variants. In the first case, the coordinates

in the state variable position are assigned to the variable

cmd. In the second case, the coordinates are determined

via a lookup table. The internal event is then triggered

in the phase Active.

This results in an output event cmd at port IM_CMD

(IM_CMD!cmd), which is sent to the IM layer (see Fig-

ure 7). The R component remains in phase Active due

to σ = ∞ until an external event, a status message from

the IM layer, occurs at port IM_STS.

If a status event ’error’ (IM_STS?’error’) is re-

ceived, the phase Error is entered, and an error

handling routine is called, which is omitted in Fig-

ure 9. In the case of receiving a status event ’done’
(IM_STS?’done’), a transition to the phase Passive takes

place, the state variable sts=’done’ is set, and with

σ = 0 an internal event is scheduled. This triggers an

output event CM_STS!sts to send the status information

to the CM layer and sets σ = ∞. Now, the component

R is ready to execute a new task. The transformation

of the tasks PlacePrt and PickPrt are carried out in the

same way.

3.3 Interface to the Robot Middleware

DEVS models require an interface to interact with real

processes. In the DEVS-RCP-V2 formalism accord-

ing to Freymann [4], activities are introduced for this

purpose. According to Zeigler et al. [7], activities are

Function Specified System (FNSS). An activity is char-

acterized by a start and end event and has a duration.

Permissible time windows can be defined for the execu-

tion times of activities. During the execution of activi-

ties, status queries can be made about the process.

In DEVS diagrams, activities are defined in the bot-

tom right-hand field. For the interface component, an

evaluation order of the internal state transitions (dashed

lines) must be specified. The order is set with priori-

ties, with value 1 as the highest priority. Otherwise, the

notation is identical to the previous diagrams. The fol-

lowing explanation of the DEVS specification focuses

on the special features with regard to activities.

Figure 10 shows the DEVS specification of the com-

ponent INTF, which acts as interface between a robot

component R in the PM layer and the robot midle-

ware (see Figure 7). Like R, INTF defines the three

phases Passive, Active and Error, with the initial phase

Passive. In the phase Passive, INTF can receive input

events from R and converts these into process interac-

tions. This means that INTF must start and monitor ac-

tivities and sends status messages back to R as output

events.

INTF defines three activities. Two activities are

based on application programming interface functions

of the robot middleware.
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Passive
@

INTF

phase:{'Active','Passive','Error'} = 'Passive'
: 0,

+ = 
tCMD: 0

+= 0
Position:{(x,y,z)|x,y,z }=( , , )
id: = 

CMD:{String,Position} STS:{'done','error'}

STS!'done'@[id== ]

CMD?cmd
/{ =5,tCMD=getWCT(),

id=rmove(cmd)}

Error
@

Active
@

STS!'error'
@[getWCT()>tCMD+10]

@[ris(id)=='True']/{ =0,id= }

1

/{ =0.1}

3

2

1

2

getWCT() tCMD
rmove(cmd) id
ris(id)  
   {'True','False'}

DEVS specification for the robot interface
components INTF1 and INTF2

The activity rmove starts a robot or gripper move-

ment and returns an id as an identifyer. This id can

be used with the activity ris to determine whether the

movement has been completed or not. The activity

getWCT provides the wall-clock-time (WCT) and is

used to monitor the execution time of a movement ac-

tivity.

When a movement activity starts, i.e. a state tran-

sition from Passive to Active is triggered by an exter-

nal event CMD?cmd, the WCT is written to the state

variable tCMD. It is assumed that a movement takes at

least 5 seconds (σ=5) and is completed after a maxi-

mum of 10 seconds, which is defined by the condition

@[getWCT > tCMD +10]. If the upper time limit is ex-

ceeded, a transition from phase Active to Error occurs

and an output event ’error’ is sent to the PM layer via

port STS (STS!’error’).
The sampling time for status queries to the process

with the activity ris is set to 0.1 seconds (σ=0.1). If

the ris activity returns the status ’True’ in the permit-

ted time interval, the condition @[ris(id) == ’True’]
applies.

An immediate internal event is scheduled with σ=0.

This means that the output event STS!done is trig-

gered immediately in phase Active and INTF switches

to phase Passive with σ = ∞.

For real-time synchronization, DEVS-RCP-V2

defines an RTC component on the IM layer (Figure 7).

The DEVS specification of RTC can be found in

Freymann [4].

3.4 Transformation of Tasks with
Interactions

The interaction class 3 in Figure 5 defines that the

robots move into a common workspace. Access to the

IB is critical and must be coordinated by mutual ex-

clusion (mutex). Mutex has been discussed in Subsec-

tion 2.3 and the concept of a related TOC structure is

shown in Figure 7. The coordination of the robots via

Mutex is implemented in the RT component on the PM

layer.

The robot components R on the PM layer must be

adapted to communicate with RT. The tasks Lock and

UnLock on the CM layer can be specified as described

in Section 3.1.

Figure 11 shows the DEVS specification of the

adapted component R. Communication with RT takes

place via the input/output ports RT_IN and RT_OUT. In

addition, a new phase PassiveRT is introduced. An ex-

ternal event CM_CMD?(tid,p1,p2) with tid=-1 or tid =
-2 encodes the execution of the newly introduced tasks

Lock or UnLock. σ = 0 schedules an internal event and

R switches to phase PassiveRT. In PassiveRT an output

event RT_OUT!(tid,rid,p1) is triggered and send to the

RT component.

The event contains the task ID in tid, the robot ID

in rid and the identifier of the resource to be locked or

unlocked in the parameter p1. Due to σ = ∞, R remains

in the phase PassiveRT until a ’done’ event is received

from RT, which causes the transition of R to the phase

Passive.

Here, R schedules an internal event (σ = 0) that trig-

gers an output event CM_STS!sts with sts=’done’ to the

parent CM layer. R waits in phase Passive (σ = ∞).

Figure 12 shows the specification of component

RT.1 It processes incoming events from the robots R

(R1_IN?(tid1,rid1,p1) or R2_IN?(tid2,rid2,p2)) and re-

sponds to them with a ’done’ event if a task can be exe-

cuted.

Robots R can simultaneously request the reservation

of a resource from RT. In this case, robot R1 is given

priority because its reservation request is checked first.

The reservation is made by means of a resource identi-

fier, such as IB in the transportation problem.

The information about which robot reserves which

resource is stored in a resource list RcsList. A resource

can only be added to the list if it does not already exist

in it.

1The specification of RT is incorrect in Freymann [4].
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Passive
@

Error
@

PassiveRT
@

R(rid)

CM_CMD:{(tid,p1,p2)} CM_STS:{'done','none'}

RT_IN:{'done'} RT_OUT:{(tid,rid,p1)}

IM_STS:{'done','error'} IM_CMD:{Strings,position}

Passive
@

CM_STS!sts/{ = }

Error
@

1

2

1

PassiveRT
@

RT_OUT!(tid,rid,p1)/{ = }

1

1
2

2

2

RT_IN?'done'/{sts='done' =0}

@[tid==-1] 
#Lock(p1)

@[tid==-2]
#UnLock(p1)

1

2

phase: {'Active','Passive','Error','PassiveRT'} = 'Passive'
: {0, }= 

rid: {RobotID} = rid
tid:{1,2,3,4,-1,-2,-3,-4,-5}=
p1,p2:{Strings}=
sts:{'done','none'}=
position:{(x,y,z)|x,y,z }=( , , )
cmd:{Strings,position}=

1

2

1

1

1
2

2

2

1

2

as
 b

ev
or

CM_CMD?(tid,p1,p2)/{ =0}

Figure 11: Extension of the DEVS specification for R to
support coordination (interaction class 3)

(cmd,tid) = RcsList.tryadd(rid,p)

if p is not in RcsList

cmd = ’done’; tid = 0; RcsList.add(rid,p);

else
cmd=/0; tid = -1;

with:
cmd ∈ {’done’}, tid ∈ {0,-1}
rid ∈ {’R1’,’R2’}, p ∈ {’IB’}
logging of rid within RcsList is just for debugging

A successful reservation is communicated to the

robot components R via a ’done’ event. If a resource

is released again its ownership can immediately pass

to another robot. It follows from this that, due to

concurrency, the task UnLock must be evaluated first.

Only then is the task Lock evaluated.

RT

phase: {'Active'} = 'Active'
: {0, }= 

rid1,rid2: {'R1','R2'} 
tid1,tid2:{0,-1,-2}=0
p1,p2:{'IB'}=
cmd1,cmd2:{'done'}=
RcsList:{(rid,rcs)|rid {'R1','R2'},rcs {'IB'}}=

R1_IN(tid1,rid1,p1): R1_OUT:{'done'}

R1_IN?(tid1,rid1,p1)|R2_IN?(tid2,rid2,p2)/{ =0}

Active
@

R2_IN(tid2,rid2,p2): R2_OUT:{'done'}

#R1.Lock(p1)
@[tid1==-1]/{(cmd1,tid1)=RcsList.tryadd(rid1,p1)}

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

#R2.Lock(p2)
@[tid2==-1]/{(cmd2,tid2)=RcsList.tryadd(rid2,p2)}

#R1.UnLock(p1)
@[tid1==-2]/{RcsList.delete(rid1,p1),cmd1='done',tid1=0}

@[tid2==-2]/{RcsList.delete(rid2,p2),cmd2='done',tid2=0}
#R2.UnLock(p2)

R1_OUT!cmd1|R2_OUT!cmd2/{cmd1= ,cmd2= , = }

#Input from Robots

#Output to Robots

Figure 12: DEVS specification of RT component for interaction
class 3

4 Summary

It has been shown that the classification of interactions

in MRS enables their systematic mapping in the form

of reusable tasks. In this way, controls for MRS can be

specified in a completely task-oriented manner, analo-

gous to SRS. The task transformation takes place anal-

ogously to SRS, with the complexity increasing when

interactions are added.

Using an application example, it has been shown

that the SBC approach can be used to develop

manufacturer-independent and consistent simulation-

based controls from the early planning phase to the

operational phase. In the course of implementation,

generic components were derived that were consis-

tently reused and gradually developed further. The

prerequisite for the approach is appropriate robot

midleware.
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The DEVS formalism has been used as the basis for

the SBC approach. This enabled the modular task con-

cept to be implemented step by step and consistently.

With the help of DEVS diagrams, even partially com-

plex dynamics could be clearly represented. For the

practical tests, the diagrams were implemented one-to-

one in a DEVS based MATLAB environment.

Interactions between robots and humans and with

the environment were not taken into account. However,

the work can serve as a blueprint. The implementation

of the other interaction classes will be presented in a

follow-up article.
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