
215

S N E T E C H N I C A L N O T E

Design of a Model Library for the Low-Cost
Functional Development of Mechatronic Systems

Sven Jacobitz*, Jie Zhang, Xiaobo Liu-Henke

Institute for Mechatronics, Ostfalia University of Applied Sciences, Salzdahlumer Str. 46/48,
138302 Wolfenbüttel, Germany; *sve.jacobitz@ostfalia.de

SNE 34(4), 2024, 215-223, DOI: 10.11128/sne.34.tn.10714

Selected ASIM WS 2023 Postconf. Publication: 2023-10-15

Rec. Improved English V.: 2024-08-12; Accepted: 2024-09-20

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. The increasing complexity of mechatronic
systems demands a structured and systematic approach
to their development, thereby highlighting the impor-
tance of Rapid Control Prototyping (RCP) as an essential
methodology.
Consequently, it is imperative to have a comprehensive
Computer Aided Engineering (CAE) platform to facilitate
support throughout the development process. Tradi-
tional CAE platforms, however, are often prohibitively ex-
pensive, leading to the development of LoRra at Ostfalia
as a low-cost alternative.
Central to this paper, the LoRra model library supports
the entire RCP development process through robust data
management that includes advanced version and config-
uration management capabilities. By utilizing a system-
atic, hierarchical organization ofmodels within a tree-like
structure and enabling multi-user access, the library pro-
motes consistent and traceable development processes.
This framework not only enhances the reusability and re-
liability of development artifacts but also lowers barriers
to adopting rapid control prototyping methodologies for
small and medium-sized enterprises (SMEs).
This paper discusses the design, functionality, and imple-
mentation strategies of the LoRra library, demonstrat-
ing its potential to significantly influence the future of
mechatronic system development by improving accessi-
bility and systematic management.

Introduction
The complexity and functional scope in mechatronic

systems is constantly increasing. This trend represents a

major challenge for small and medium-sized enterprises

(SMEs). To remain competitive, they must integrate

more and more intelligent hardware and software into

their products. This can be attributed to the increasing

number of functions, as well as the growing number of

complex and interdependent software components [1].

This is a sample text in blue.

A structured, systematic development of such sys-

tems is indispensable to handle ever shorter devel-

opment times with higher quality requirements [2].

Holistic model-based Rapid Control Prototyping (RCP)

methodology that is frequently employed in this con-

text. It is imperative that a Computer Aided Engi-

neering (CAE) platform provides seamless support in

order to achieve a high degree of automation, which

is a fundamental aspect of RCP. The cost of estab-

lished CAE platforms represents a significant barrier

to the introduction of the RCP process, particularly for

small and medium-sized enterprises (SMEs). As part of

the EU-funded research project Low-Cost Rapid Con-
trol Prototyping-System with Open-Source Platform for
the Functional Development of Embedded Mechatronic
Systems (LoCoRCP), the low-cost development plat-

form LoRra was created at Ostfalia [3].

In order to guarantee the reusability of models and

functions, a systematic approach to data management

is employed, encompassing associated sub-processes

such as version and configuration management. This is

indispensable due to the high diversity, flexibility, and

short lifetime [4]. The initial regulatory framework for

this was established at NASA in the early 1960s, as doc-

umented in [5]. As Sax et Al. [6]observe, inconsisten-

cies in function development are increasingly caused by

the high number of variants. This issue can be avoided

by using appropriate configuration management. In the

context of RCP, this requires a CAE-based model li-

brary that manages all relevant artifacts (such as mod-

els, program source code, or documentation) [7].

Version and configuration management are widely

utilized in the domain of classical software develop-

ment. For an overview, see [8]. One of the most

commonly utilized open-source tools in versioning is

GIT [9]. Nevertheless, the primary objective of this

tool is to facilitate the change-based management of

text files [10].

This is a sample text in blue.

SNE 34(4) – 12/2024

216

Jacobitz et al. Model Library for Low-Cost Functional Development of Mechatronic Systems

Nevertheless, the application of this change-based

approach to data formats commonly utilized in RCP is

not particularly practical, as evidenced by [11]. Conse-

quently, it is essential to implement suitable adaptations

for utilization in a model library.

To identify the requisite adaptations, Kruse and

Shea conducted systematic investigations [7]. In this

approach, a model is constructed in a standardized

way from metadata, interface information, and param-

eters. Based on such a standardized structure, version

and configuration management for complex, compos-

ite models can also be carried out using a system entity

structure (SES) [12].

In the following, the CAE-based LoRra model li-

brary is conceived, designed and realized as an exam-

ple. The rest of the paper is structured as follows: Sec-

tion 1 summarizes the RCP-development methodology

and introduces the LoRra-platform. In section 2, the ba-

sics of the solution are designed based on an analysis of

the requirements, which is then concretized into a de-

sign in section 3. Finally, a approach of realization is

provided in section 4. Section 5 summarizes the results

and provides an outlook for future work.

1 Development Methodology
and Platform

Due to the high system complexity of modern inter-

connected mechatronic systems, the structured, model-

based, verification-oriented RCP process is used for de-

velopment and validation. This comprises the follow-

ing process steps: modeling, analysis/synthesis, auto-

mated generation of source code, automated implemen-

tation on real-time hardware, and online experimenta-

tion. Model-in-the-Loop (MiL), Software-in-the-Loop

(SiL), and Hardware-in-the-Loop (HiL) simulations are

employed to support this methodology [13].

The methodology delineated in this work is distin-

guished by its high level of consistency and automa-

tion, encompassing modeling, model-based functional

design, automated code generation, and real-time im-

plementation, as depicted on the left side of Figure 1.

This approach is supported by a fully automated, seam-

less CAE platform. Specifically, the LoRra develop-

ment platform represents a modular, low-cost example

of such a CAE system.

Figure 1 demonstrates the RCP development pro-

cess and the comprehensive integration facilitated by

LoRra (cf. [3]).

Central to this plattform is a model library that

ensures a consistent and traceable development status

throughout all phases of the development process.

Modelling

Automatic C-Code
generation

Automatic
implementation

Target Hardware

RCP process

Online experiment
with HMI

Se
am

le
ss

 R
C

P
de

ve
lo

pm
en

t p
la

tf
or

m Analysis and Synthesis

LoRra-iGES
For online measurement

and calibration

LoRra-RTI
executable program file

LoRra approach

Scilab/Xcos

LoRra-Code-generator
efficient and adaptable code

Microcontroller

LoRra model libraries

Figure 1: RCP development process with seamless support
by the LoRra platform [3].

A comprehensive multi-domain model library is uti-

lized throughout the modeling process. This library fa-

cilitates the clear assembly and management of model

variants through robust version and configuration man-

agement systems. The open-source CAE tool Scil-

ab/Xcos is employed for the analysis and synthesis of

functions, offering functionalities comparable to those

found in the commercially frequently utilized Mat-

lab/Simulink.

Subsequently, the resultant functional model can be

seamlessly integrated into the model library. The LoRra

Application Programming Interface (API)’s open inter-

faces enable straightforward incorporation of additional

modeling programs and interface drivers, enhancing the

system’s versatility. MiL simulations are leveraged to

optimize and validate the functions at an early develop-

mental stage.

The LoRra code generator implements model-

to-text transformation techniques to automatically

produce efficient, modular C source code derived

from the functional model. This generator is designed

with open functional descriptions of the model’s basic

elements, called basic blocks, allowing for flexible ex-

tensions.

SNE 34(4) – 12/2024

217

Jacobitz et al. Model Library for Low-Cost Functional Development of Mechatronic Systems

The resulting source code can be reintegrated into

the Xcos model for further optimization and testing via

SiL simulations without the need for manual interven-

tion [14].

Upon achieving a satisfactory functional status, the

interfaces with the controlled system models or other

functions are substituted with blocks from the LoRra

Real-Time Interface (RTI). This substitution facilitates

the configuration and programming of real-time hard-

ware without manual coding.

The hardware-specific RTI framework includes a

real-time operating system and standardized interface

drivers, enabling automated deployment on real-time

hardware platforms such as low-cost microcontrollers,

for instance, those from the STM32H7 series. HiL

simulations are employed to optimize and evaluate the

developed functions under real-time conditions [15].

Additionally, the integrated graphically-supported ex-

perimentation software (iGES) serves as an intuitive

Human-Machine Interface (HMI) for controlling, mon-

itoring, and recording data during online experiments.

2 Conception of the Library

This section is dedicated to the concept of the model li-

brary and begins with an analysis of the requirements.

Various development approaches for graphical user in-

terfaces (GUIs) are then examined.

A basic solution approach is developed on the basis

of these analyses. The detailed consideration of these

aspects lays the foundation for the subsequent steps

in the design and realization of the model library, de-

scribed by the next sections.

2.1 Development Approaches for Graphical
User Interfaces

Standardized architectural styles play a pivotal role in

structured software design, facilitating reusability, or-

ganizing design processes, and establishing a uniform

vocabulary [16]. Notably, over a quarter of these styles

are employed in designing user interfaces [17]. The

Model/View/Controller (MVC) principle is particularly

significant in the context of this work.

Based on [18], the MVC architectural style is de-

picted in Figure 2. This framework segregates the vi-

sualization (View), control, and data model into distinct

components with clearly defined interfaces. The con-

trol component responds to user interactions within the

GUI and modifies the model as needed.

Additionally, the model may be altered by other

software components. It communicates any modifica-

tions to the control component, enabling the latter to

refresh the view. This architecture’s low coupling be-

tween components makes it especially apt for HMIs that

operate across various platforms [19]. For instance, the

graphical visualization specific to an operating system

can be entirely isolated from both the controller and the

model, enhancing adaptability and maintainability.

ModelView

Controller

Output

Input

Changes

Notifies

Changes

Figure 2: Idea of the architectural style Model/
View/Controler according to [18].

Applying his MVC principle ensures a modular

reusable software design.

2.2 Requirements on the Model Library

As delineated in section 1, the model library serves as

a crucial instrument for data management throughout

the development process. To fully enhance version and

configuration management, the model library must ad-

here to several stringent requirements:

1. Version Control: It must support comprehensive

versioning of all data it contains, including func-

tionalities for version management processes such

as checking and releasing versions.

2. Configuration Management: The library should

facilitate the necessary data structures for configu-

ration management across all stages of the devel-

opment process, along with associated processes

(e.g., checking, release) to maintain consistent data

status throughout these stages.

3. Hierarchical Organization: Models should be

categorically and hierarchically structured, allow-

ing for configurable categories and levels that en-

hance organization and retrieval.

SNE 34(4) – 12/2024

218

Jacobitz et al. Model Library for Low-Cost Functional Development of Mechatronic Systems

4. Search Capability: A robust search function is es-

sential to efficiently locate specific models within

the library.

5. Collaboration Features: The library should sup-

port collaborative work in distributed teams, en-

abling seamless access and modification of a

shared model base.

6. Comprehensive Display of Information: It

should provide a clear and detailed overview of

all relevant model information to facilitate easy ac-

cess and understanding for all users involved in the

project.

These requirements are essential to ensure that the

model library effectively supports the intricate and dy-

namic needs of modern software development environ-

ments.

2.3 Basics of the Solution

To fully address the requirements of the model library,

it is imperative to examine the structure of a model in

greater depth. The distinction between generic and ag-

gregated models forms a crucial part of this analysis.

Generic
 Model

Metadata

Model

ParameterInterface informationArtifacts

Figure 3: Structured setup of a generic model.

Generic Model: This represents the smallest coher-

ent unit within the model library and operates at the

lowest level of hierarchy. It is indivisible and does not

contain any submodels structured hierarchically below

it. An example of a generic model is the electrical part

of a DC motor, represented by equation (1). Figure 3

visually details the structure of a generic model, which

encompasses the following components:

u = Ri+L
di
dt

−ui (1)

• Metadata: These attributes detail overarching

characteristics such as the model’s name, author,

and a general description.

• Interface information: This includes the data

structure, units, and other pertinent details about

the model’s inputs and outputs. For instance, us-

ing equation (1), the terminal voltage u in volts (V)

as input and the motor current i in amperes (A) as

output.

• Parameters: Specifications and values for the

model’s parameters, such as the resistance R in

ohms (Ω) and the inductance L in henries (H).

• Artifacts: These may include the simulation file

(e.g., in Xcos format), generated C code, or docu-

mentation associated with the model.

This is a sample text in blue.

Aggregated Model: This type of model comprises

multiple sub-models and represents a higher hierar-

chical level within the library. Aggregated models

are structured as configurations in the model library,

formed by integrating specific versions of part models.

The concept of assembling these configurations is il-

lustrated in Figure 4.

Model Part 1

Model Part 2

Configuration 1
1.0 2.0

1.0

3.0 4.0 5.0

1.1 1.2

Legend
Model change
Model reference

Model version

Figure 4: Basic concept of assembling a configuration.

In terms of organization, models should be struc-

tured hierarchically in a tree-like format within the li-

brary. This structure includes folders (grouping hierar-

chy element) and model elements (both generic and ag-

gregated models). User rights management is crucial,

allowing permissions to be assigned both to groupings

and individual model elements.

SNE 34(4) – 12/2024

219

Jacobitz et al. Model Library for Low-Cost Functional Development of Mechatronic Systems

To facilitate multi-user access, a central storage

principle is utilized, as shown in Figure 5. A local work-

ing copy is employed to access and modify model arti-

facts. Any changes made are then synchronized back to

the central repository, which functions as a comprehen-

sive database.

Following synchronization, users can update their

local copies with the modified data, ensuring that all

team members have access to the most current versions

of models and configurations.

Central
repository

Local working
copy

Local working
copy

User 1 User n

…

Changes
Copy Changes

Figure 5: Concept for the central storage of models.

Employing this approach enables the systematic de-

sign of a model library seamlessly integrated into the

RCP process. This integration facilitates efficient and

coherent management of model data throughout the de-

velopment cycle.

3 Design of the Library
Functions

Building on the concepts introduced in section 2, this

section provides a detailed elaboration of the proposed

system.

Initially, we examine the data structures and inter-

faces, as well as the mechanisms for data management.

Subsequently, the design of the GUI is addressed to

ensure a seamless and efficient user experience. This

structured approach ensures that both the backend and

frontend components of the system are robustly devel-

oped and integrated.

This is a sample text in blue.

3.1 Data Structures

The design of the model library requires intricate data

structures and interfaces to support its functionality. At

the core of the library is the hierarchical model tree,

which also serves as the foundational database for the

GUI developed according to the MVC principle. This

section elaborates on the design of the data structure

and interfaces that underpin the model tree.

The data structures are designed using object-

oriented principles. The abstract class AModelEle-
ment acts as the foundational structure for each element

within the tree, encapsulating essential data such as the

element’s title, its path within the tree, and its parent

element.

Derived from AModelElement are two key classes:

HierarchyElement and ModelElement.

• HierarchyElement: This class manages a collec-

tion of subordinate elements, effectively organiz-

ing them within the tree structure to facilitate nav-

igation and management.

• ModelElement: This class is more specialized

and includes detailed interface information, pa-

rameters, and storage details of the model, among

other pertinent data. This encapsulation ensures

that each model within the library is both self-

contained and richly described for easy access and

modification.

Figure 6 provides a visual representation of these

relationships through a UML class diagram, illustrating

how these elements are interconnected to form a robust

and scalable model tree structure. This structure is crit-

ical for supporting the complex interactions and data

management requirements of the model library in the

RCP process.

The object-oriented design of the data structures

ensures that the model library is both scalable and

adaptable, supporting complex hierarchies and detailed

model management. This architectural choice en-

hances functionality and integration within the RCP

process, facilitating efficient navigation and modifica-

tion of models.

3.2 Data Management

The data management within the model library primar-

ily hinges on robust version and configuration manage-

ment systems.

This is a sample text in blue.

SNE 34(4) – 12/2024

220

Jacobitz et al. Model Library for Low-Cost Functional Development of Mechatronic Systems

AModel Element

Hierarchy element Model Element

Interface information Memory information

Parameter

Figure 6: UML diagramm of the hierarchical model tree.

To facilitate consistent versioning and thereby en-

able structured reuse in configurations, the library must

support a version management process that includes

the formal release of new versions. Modifications to

a model necessitate its reincorporation as a new version

following company-specific approval procedures. For

the LoRra model library, versions suggested by users

are only made publicly available after obtaining consent

from designated groups, as mandated by organization-

specific protocols.

Version identification within the model library uti-

lizes a semantic versioning approach by the numerical

format, x.y, where ’x’ represents the major version and

’y’ the minor version.

Minor version increments occur when updates (such

as bug fixes) do not alter model compatibility (i.e., be-

havior and interfaces remain unchanged). Conversely,

major version increments – accompanied by resetting

the minor version to zero – are employed when changes

impact model compatibility, such as modifications to

interfaces or functionality enhancements. Models are

integrated into configurations by referencing these ver-

sion numbers, as depicted in Figure 4, which outlines

this versioning principle.

Effective data management within the model library

is achieved through meticulous version and configura-

tion management, ensuring that models are consistently

updated and released in alignment with defined organi-

zational processes. This systematic approach supports

the seamless integration and reuse of models across var-

ious configurations, enhancing the library’s utility and

reliability.

This is a sample text in blue.

3.3 Graphical User Interface

The GUI of the LoRra model library is designed in ac-

cordance with the MVC principle, as outlined in sec-

tion 2.1.

The foundation for this design (the model com-

ponent) is the hierarchical model tree developed in

section 3.1, complemented by various control classes

tasked with specific functions.

Figure 7 depicts the comprehensive layout of the

GUI. The main window is segmented into three primary

parts:

• Navigation Area: This section hosts the hierar-

chical model tree, enabling users to perform vari-

ous actions such as opening or editing models, and

provides an initial overview of the current model

status. It also includes a search function for navi-

gating the model tree.

• Display Area: This part offers different views for

the presentation and modification of information,

including metadata, model artifacts, and version

history.

• Tool Area: This section features a context-

sensitive toolbar and a menu structure designed to

facilitate the operation of the library.

Part (1)

Part (3)

Part (2)

Figure 7: Draft of the model library GUI.

This structured approach ensures a clear and effec-

tive interaction with the model library, enhancing user

experience and operational efficiency.

4 Realization
The initial implementation of the model library utilizes

Java within an object-oriented Eclipse Rich Client Plat-

form framework (cf. [20]).

This is a sample text in blue.

This is a sample text in blue.

SNE 34(4) – 12/2024

221

Jacobitz et al. Model Library for Low-Cost Functional Development of Mechatronic Systems

Listing 1: Exemplary model tree in JSON format.

{
"title" : "root",
"relPath" : "",
"children" : [{
"title" : "Vehicle models",
"relPath" : "vehicle_models/",
"children" : [...]

}, {
"title" : "Function models",
"relPath" : "function_models/"

,
"children" : [{

"title" : "VMS",
"relPath" : "VMS/",
"children" : [...]

},
{
"title" : "AMS",
"relPath" : "AMS/",
"children" : [{

"relPath" : "efm/",
"metaFileName" : "efm.json

",
"repoUrl" : "https://

tinyurl.com/repo_efm/"
}, ...]

}]
}, ...]

}

The Eclipse platform provides numerous built-in

mechanisms essential for development, including the

Standard Widget Toolkit and event-driven, low-coupling

communication among various graphical components.

Moreover, it supports a wide range of extendable plug-

ins with open interfaces.

Version management is integrated using the open-

source tool GIT (cf. [9]), which offers established

versioning protocols. The LoRra setup facilitates the

avoidance of the limitations identified earlier by em-

ploying structured, text-based model descriptions.

Initially, user authentication is set up for the At-

lassian service Bitbucket, with potential for future en-

hancements.

The model descriptions are structured in JSON for-

mat, aligning with standards outlined in [21]. Listing 1

illustrates an example of a model tree stored in this for-

mat.

This is a sample text in blue.

Hierarchy elements are designated by attributes

such as title (the display title of the element), rel-
Path (the relative file path to the parent hierarchy ele-

ment), and children. Model elements are characterized

by fields like relPath, metaFileName, and repoUrl (the

URL to the online GIT repository), with all pertinent

metadata stored in the file identified by metaFileName.

The integration of sub-models into configurations is

managed through XML-based SES, facilitating the es-

tablishment of an abstract structure for new configura-

tions as a preliminary phase. This is followed by the

generation of a specific configuration by referencing the

appropriate sub-models and specifying the required ver-

sion and variant.

This implementation strategy leverages the robust

capabilities of proven tools for efficient version man-

agement and flexible integration, ensuring a scalable

and modular architecture. By utilizing open text based

formats for structured data representation, the model li-

brary effectively supports complex configurations and

facilitates seamless data management and access.

5 Summary and Outlook

The paper discusses the design and implementation of

a model library within the Low-Cost Rapid Control

Prototyping platform LoRra, aimed at enhancing the

functional development of embedded mechatronic sys-

tems. The LoRra library offers a cost-effective alter-

native to traditional CAE platforms, particularly ben-

eficial for SMEs. It incorporates systematic data man-

agement with robust version and configuration manage-

ment to ensure reusable, reliable, and consistent access

to development artifacts across the system’s develop-

ment cycle. The library utilizes a hierarchical, tree-like

structure for organizing models and supports multi-user

environments through central storage and local working

copies, ensuring that all team members access the most

recent data.

The model library’s foundational framework is

robust, but enhancements are planned to optimize

functionality and user experience. These include

adding undo/redo functions, improving navigation

in the GUI, and integrating advanced graphical edi-

tors for better model configuration and visualization.

Enhancing the GIT tool’s differential capabilities for

Xcos models will allow more effective visualization

of changes, aiding in version tracking and management.

This is a sample text in blue.

SNE 34(4) – 12/2024

222

Jacobitz et al. Model Library for Low-Cost Functional Development of Mechatronic Systems

A new user authentication system will support in-

tegration with central storage, boosting collaboration

across distributed teams.

Automated consistency checks will ensure model

configurations are coherent before deployment, com-

plemented by comprehensive documentation and train-

ing materials to help new users.

Performance will be optimized through algorithm

improvements and efficient data handling, particularly

for large-scale projects. Establishing a community for

sharing models and best practices, along with collabo-

rative development features like shared workspaces and

real-time tools, will increase the library’s utility and

reach.

Focusing on these improvements, the LoRra model

library aims to significantly enhance its capabilities

and user satisfaction, supporting the advancement of

mechatronic systems and adapting to user needs.

Acknowledgement

Funded by the Lower Saxony Ministry of Science and

Culture under funding number ZN3495 in the Lower

Saxony Advance of the Volkswagen Foundation and su-

pervised by the Center for Digital Innovations Lower

Saxony (ZDIN).

References
[1] Liu-Henke X, Scherler S, Fritsch M, Quantmeyer F.

Holistic development of a full-active electric vehicle by

means of a model-based systems engineering. In:

Proceedings of 2016 IEEE International Symposium on
Systems Engineering (ISSE), edited by Rassa B,

Carbone P. 2016; pp. 1–7. DOI:

10.1109/SysEng.2016.7753142.

[2] Jacobitz S, Göllner M, Zhang J, Yarom OA, Liu-Henke

X. Seamless validation of cyber-physical systems under

real-time conditions by using a cyber-physical

laboratory test field. In: Proceedings of the
International Conference on Recent Advances in
Systems Science and Engineering (RASSE). IEEE. 2021;

pp. 1–8. DOI: 10.1109/RASSE53195.2021.9686844.

[3] Jacobitz S, Liu-Henke X. The Seamless Low-cost

Development Platform LoRra for Model based Systems

Engineering. In: Proceedings of the 8th International
Conference on Model-Driven Engineering and Software
Development. SciTePress. 2020; pp. 57–64. DOI:

10.5220/0008993500570064.

[4] Kittlaus HB. Software Product Management. Berlin,

Heidelberg: Springer. 2022. DOI:

10.1007/978-3-662-65116-2.

[5] Fahmy S. The Evolution of Software Configuration

Management. International Journal of Advanced
Trends in Computer Science and Engineering. 2020;

9(1.3):50–63. DOI: 10.30534/ijatcse/2020/0891.32020.

[6] Guissouma H, Klare H, Sax E, Burger E. In: 2018 44th
Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), edited by IEEE. 2018;

pp. 298–305. DOI: 10.1109/SEAA.2018.00056.

[7] Kruse B, Shea K. Design Library Solution Patterns in

SysML for Concept Design and Simulation. Procedia
CIRP. 2016;50:695–700. DOI:

10.1016/j.procir.2016.04.132.

[8] Ratti N, Kaur P. Case Study: Version Control in

Component-Based Systems. In: Designing,
Engineering, and Analyzing Reliable and Efficient
Software, edited by Singh H, Kaur K, pp. 283–297. IGI

Global. 2013;DOI: 10.4018/978-1-4666-2958-5.ch016.

[9] Eriksson H, Sun J, Tarandi V, Harrie L. Comparison of

versioning methods to improve the information flow in

the planning and building processes. Transactions in
GIS. 2021;25(1):134–163. DOI: 10.1111/tgis.12672.

[10] Nugroho YS, Hata H, Matsumoto K. How different are

different diff algorithms in Git? Empirical Software
Engineering. 2020;25(1):790–823. DOI:

10.1007/s10664-019-09772-z.

[11] Schmitz D, Deng W, Rose T, Jarke M, Nonn H,

Sanguanpiyapan K. Configuration Management for

Realtime Simulation Software. In: Proceedings of the
35th Euromicro Conference on Software Engineering
and Advanced Applications. IEEE. 2009; pp. 229–236.

DOI: 10.1109/SEAA.2009.69.

[12] Durak U, Pawletta T, Oguztuzun H, Zeigler BP. System

entity structure and model base framework in model

based engineering of simulations for technical systems.

In: Proceedings of the Symposium on Model-driven
Approaches for Simulation Engineering, edited by

D’Ambrogio A, ACM Digital Library. Society for

Computer Simulation International. 2017; pp. 1–10.

DOI: 10.22360/springsim.2017.mod4sim.001.

[13] Liu-Henke X, Jacobitz S, Scherler S, Göllner M, Yarom

O, Zhang J. A Holistic Methodology for Model-based

Design of Mechatronic Systems in Digitized and

SNE 34(4) – 12/2024

223

Jacobitz et al. Model Library for Low-Cost Functional Development of Mechatronic Systems

Connected System Environments. In: Proceedings of
the 16th International Conference on Software
Technologies (ICSOFT), edited by Fill HG, van Sindern

M, Maciaszek L. SciTePress. 2021; pp. 215–223. DOI:

10.5220/0010566702150223.

[14] Jacobitz S, Liu-Henke X. Automatic Code Generation

for a Seamless Low-cost Development Platform. In:

10th International Conference on Model-Driven
Engineering and Software Development
(MODELSWARD), edited by Pires LF, Hammoudi S,

Seidewitz E. 2022; pp. 294–301. DOI:

10.5220/0010894300003119.

[15] Jacobitz S, Liu-Henke X. A Real-Time Interface for

Xcos – Demonstrated on a Battery-management

System. In: 2nd Scilab Conference. 2019; pp. 1–8.

[16] Bass L, Clements P, Kazman R. Software architecture
in practice. SEI series in software engineering. Upper

Saddle River NJ u.a.: Addison-Wesley, 3rd ed. 2013.

ISBN: 978-0321815736.

[17] Henninger S, Corrêa V. Software pattern communities:

current practices and challenges. In: Proceedings of the
14th Conference on Pattern Languages of Programs,

edited by Aguiar A, Yoder J. ACM Press. 2007; pp.

1–19. DOI: 10.1145/1772070.1772087.

[18] Adams S. MetaMethods: The MVC paradigm.

HOOPLA! 1988;1(4).

[19] Liu Z, Li F, Liu H, Wu C, Zhang J. A Study of Cockpit

HMI Simulation Design Based on the Concept of MVC

Design Pattern. In: Proceedings of the 3rd International
Conference on Modelling, Simulation and Applied
Mathematics (MSAM 2018). Atlantis Press. 2018; pp.

82–84. DOI: 10.2991/MSAM-18.2018.19.

[20] Vogel L. Eclipse Rich Client Platform: The complete
guide to Eclipse application development. Hamburg:

Vogella, 3rd ed. 2015. ISBN: 978-3943-747133.

[21] International Organization for Standardization.

ISO/IEC 21778:2017: Information technology - The

JSON data interchange syntax. 2017.

SNE 34(4) – 12/2024

