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Abstract.  Autonomous Mobile Systems (AMS) offer sig-
nificant advantages for industry and private sectors by 
adapting to diverse and dynamic environments. To train 
these systems, large amounts of data are required, typi-
cally obtained from simulated environments. However, 
the creation of these environments is often labor-inten-
sive. Here, we propose a generative pipeline that provides 
a streamlined approach to virtual training and testing 
while allowing users to apply automated methods includ-
ing generative AI.  
Our pipeline consists of four, partly iterative main steps. 
The pipeline spans from the creation of individual assets 
to the utilization of the simulated environments. The pipe-
line is then implemented for an exemplary scenario, uti-
lizing multiple methods including generative AI.  
Furthermore, we propose a novel application of our pipe-
line to provide robots with the capabilities to “imagine” vir-
tual experiences based on anticipated tasks.  
The presented pipeline not only simplifies the process of 
generating simulated environments, but also resembles a 
scalable framework for developing increasingly complex 
AMS. 

Introduction 
Mobile robots, and in particular Autonomous Mobile 
Systems (AMS), are transforming the world. While 
transport robots are already well-established in industry, 
they have not yet reached their peak. In the coming years 
companies will expand their fleets and applications with 
new systems, increasingly powered by AI. [1] 

 

Developing and training AI models requires massive 
amounts of data to ensure performance in the demanding, 
large, dynamic, and diverse operating environments of 
AMS. One solution to reduce the effort associated with 
collection and annotation of the required data is simula-
tion. In simulated environments, the possibilities to gen-
erate synthetic data are virtually unlimited. However, 
generating data for all kinds of imaginable scenarios, is 
still related with large human efforts. Recent break-
throughs in generative AI could enable developers of 
AMS to reduce the needed effort while improving the 
quality of synthetic data from robotics simulation. 

Most of the existing work on the generation of simu-
lated robot training environments focuses on reinforce-
ment learning in small manipulation scenarios [2, 3]. 
Those do not lie within the scope of our work. One nota-
ble exception has been presented by Bonetto et al. Their 
approach focuses on “Generating Realistic Animated 
Dynamic Environments for Robotics Research”, abbre-
viated “GRADE” [4]. GRADE requires an existing set of 
assets. Bonetto et al. have, among others, proven that 
synthetic data from simulated environments can be suffi-
cient to train and validate vision-based robots [5, 6]. An-
other related approach that utilizes generative AI has 
been presented in the position paper “Towards Generalist 
Robots: A Promising Paradigm via Generative Simula-
tion” [7]. Their related work “RoboGen” [3] focuses on 
motion planning for stationary robots. Xian et al. define 
the term 'generative simulation'. Their concept is sup-
posed to generate scenes with accompanying robot tasks 
and at the same time include training supervision. Alt-
hough the authors discuss multiple ideas and claim to be 
able to generate infinite data for various robots in various 
environments, at the time of writing this paper, the work 
of Xian et al. remains primarily a literature review with-
out actual implementation. While an interesting physics 
simulator, GENESIS is currently missing the promised 
aspects of ‘generative simulation’. [8] 
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In this paper, we first identify methods that are rele-

vant in the context of simulated environments for AMS. 
We then present a generative pipeline for the creation of 
simulated environments for AMS. The pipeline consists 
of four main steps, which are partially iterative. In this 
modular approach, different methods can be employed in 
different steps of the pipeline. This applies to both con-
ventional methods and generative AI-methods. We fur-
thermore present an exemplary implementation of our 
pipeline that utilizes several of the methods discussed to 
create simulated environments, fully populated with AI-
generated assets. Finally, we introduce the concept of  
imaginative robots and propose the application of our 
pipeline to enable robots to prepare for new and unknown 
situations autonomously. 

1 Methods for the Creation of 
Simulated Environments 

Before defining a pipeline for creating simulated envi-
ronments, it is important to clarify the relevant methods. 
We identify four general methods that are relevant to 
simulated operating environments. These methods can 
incorporate existing models, databases, etc. Although 
these methods can be used in conjunction with each 
other, for the purpose of this discussion, we treat them as 
isolated from one another. We limit ourselves to a rather 
general evaluation, which is intended to provide general 
guidance. The presented methods may yield different re-
sults when specific approaches are evaluated. In this pa-
per we focus on static, unarticulated environments. Cus-
tomizability of assets and environments is still a relevant 
aspect for specific scenarios and with articulated models 
in mind for future work. 

1.1 Manual Methods 
The first and most obvious class of methods is manual 
methods. This classification includes all approaches 
where substantial work is done manually using tools such 
as Blender and Autodesk Maya [9, 10]. Although manual 
methods can utilize these tools, they do not involve auto-
mation. Users have control and may modify every aspect 
of their workpiece to fit within the requirements, as long 
as it is supported by the tools utilized.  

While manual methods can produce high-quality 
handcrafted results, the trade-off is that they are largely 
time consuming. Therefore, they are not suitable for 
large-scale simulated environments. 

1.2 Automated Reconstruction Methods 
Due to the time-intensity of manual methods, the appli-
cation of automated methods is attractive. A class of au-
tomated methods are methods for automated reconstruc-
tion. They are proven to be suitable for efficiently recon-
structing larger scale outdoor but also indoor environ-
ments. [11] 

Automated reconstruction approaches are often im-
plemented as photogrammetric methods based on RGB 
data, but might also incorporate depth data. The gathered 
data is then combined into photorealistic 3D models that 
accurately represent their real-world counterpart. [11, 12] 

A significant disadvantage of automated reconstruc-
tion methods is limited modifiability of the generated 
models. This hinders the application of photogrammetric 
methods in the context of generating new data for train-
ing and validation of AMS. Possible applications include 
the reconstruction of individual assets or the reconstruc-
tion of empty “base” environments that can be populated 
later on. 

1.3 Procedural Methods 
Methods for automated reconstruction cannot create new 
environments and therefore might be helpful in some as-
pects, but not to tackle the core problem of new and di-
verse data. Manual methods can build upon human imag-
ination to create new content - however strongly impeded 
by the necessary manual labor. Hence, we will now shift 
towards methods that are able to create entirely new as-
sets and environments with minimal human intervention. 

Procedural methods generate content algorithmically 
within predefined constraints, without the need for man-
ual input after an initial setup. These methods can pro-
duce a vast amount of diverse and complex data automat-
ically, both in a deterministic manner but also by incor-
porating random elements. The absence of a manual in-
put apart from the initial setup is a core feature of those 
procedural methods. 

Procedural methods are well established in computer 
games, where they are used to generate expansive virtual 
worlds, such as in commonly known Minecraft. They 
also find application in robotics simulation: NVIDIA 
Omniverse includes a "Domain Randomizer", able to al-
ter multiple parameters of a simulated scene randomly 
[13]. Further procedural approaches in robotics simula-
tion include Cropcraft [14] for generating simulated crop 
fields or the already mentioned GRADE [4]. [15, 16] 
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1.4 Generative AI-based Methods 
The next class of relevant methods is based on generative 
AI. Similar to procedural methods, generative AI-meth-
ods are able to computationally generate new content. 
Unlike procedural methods, they are generally not con-
strained to algorithmically predefined content.  

There are several popular approaches to implement-
ing generative AI, such as Generative Adversarial Net-
works (GANs), Variational Autoencoder (VAEs) or 
Transformer Models [17–19]. The latter might be the 
most publicly known type of model for being the basis of 
LLMs like ChatGPT. 

Another relevant approach involves diffusion models. 
Diffusion models start with random noise and iteratively 
refine it into a detailed output, guided by a prompt. In-
spired by the physical diffusion process, these models re-
verse noise addition, leveraging conditioning infor-
mation – like the provided prompt – to shape the noisy 
base towards the desired content. This approach enables 
the generation of high-quality outputs. [20, 21] 

A further notable approach are Neural Radiance 
Fields (NeRFs). NeRFs synthesize 3D scenes from 2D 
images by using deep neural networks to gain a volumet-
ric representation of a scene. They are able to generate 
high quality scenes, but at the cost of computational in-
efficiency. [22] 

1.5 Summary of Relevant Methods 
All of the methods discussed in this chapter are relevant 
and usable for creating simulated environments. How-
ever, each of them has specific advantages and disad-
vantages. Users have to choose a fitting method based on 
their specific needs. To summarize the findings of this 
chapter and to ease the decision-making process, Table 1 
provides a generalized comparison of the methods men-
tioned.  

All methods are compared in five categories and rated 
from -- (worst) up to ++ (best): 

• Human Effort involved, less is better 
• Quality of results assets 
• Customizability of assets for specific requirements, 

e.g. rigged objects 
• Hardware requirements imposed by the method; 

lower requirements are rated better 
• Originality, meaning the capability to generate new 

content 

 Manual Recon-
struction 

Proce-
dural Gen-AI 

Effort -- 0 + ++ 

Quality ++ + + - 

Customiza-
bility 

++ - - 0 

Hardware 
require-
ments 

0 - - -- 

Originality ++ -- 0 + 
 
Table 1: The four discussed methods for creating  

simulated environments are compared in  
regards to effort, quality, customizability, 
 hardware requirements and originality. 

2 Introduction of the 
Generative Pipeline 

In the following we introduce a pipeline which enables 
its users to create, compose and harness simulated envi-
ronments. All methods compared in the previous chapter 
can be applied throughout the pipeline. They may also be 
combined and different approaches might be used in dif-
ferent steps.  

The pipeline shown in Figure 1 consists of four steps, 
which are explained in a generic manner in this chapter. 
An exemplary implementation is described in the follow-
ing chapter. 

 
Figure 1: The proposed pipeline for the generation of sim-

ulated environments consists of four steps. 

The foundation of every virtual environment are its indi-
vidual components, which we refer to as assets. Hence 
the first step of the pipeline is the “Creation” step, where 
assets are generated. Those are 3D models of individual 
items, e.g., a machine or a table. They should be stored 
in a standardized and widely compatible format to ensure 
future usability. 
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The assets created in step one need to be classified 

and rated. This is done in step two, “Classification and 
Rating”. Depending on the method applied for creation 
of the assets, this step varies in complexity. The goal is 
to obtain a database of assets, classified at least by type 
and quality.  

An extensive, high quality model database is crucial 
for a successful implementation of later steps. Users might 
also incorporate existing and purchasable sets, needing to 
keep in mind the reduced control over the assets. 

Building upon the assets created and classified in the 
previous steps, we can proceed to the third step of “Com-
position”. Here the simulated environments are com-
posed from the models in the asset database. This step 
can vary greatly in complexity, depending on the size and 
complexity of the desired operating environment of the 
AMS in question. 

The fourth step represents the application or actual 
use of the simulated environment and does not lie within 
the scope of our work. Typical applications include the 
generation of synthetic data, validation of the AMS soft-
ware or reinforcement learning [5, 23]. 

Notably, the pipeline shown in Figure 1 does not end 
here. Instead, an iterative process is started after the ap-
plication step: The pipeline returns to the environment 
composition step. Here, a new simulated environment is 
created and then used for the desired application. This 
can be done over and over again.  

Compared to existing domain randomization ap-
proaches in robotics simulators, an entirely new environ-
ment can be created with minimal effort. The application 
can thus benefit from experiences in diverse and virtually 
unlimited environments. This is a core component of our 
approach and allows users to take full advantage of the 
work done in the first two steps. 

3 Exemplary Implementation of 
the generative Pipeline 

For the validation of the proposed pipeline, we chose a 
practically relevant scenario: An electronics production 
environment, which is to be used for the validation of an 
autonomous tow truck. In the following, we present an 
exemplary implementation of the pipeline using various 
methods. 

We chose to focus the application of generative AI on 
the first step of the pipeline.  

The second step is conducted manually due to the na-
ture of the results from the previous step. For step three 
we present and apply a highly adaptable procedural ap-
proach. In this publication the fourth step is limited to a qual-
itative evaluation of exemplary generated environments. 

For implementation we chose – independently from 
[4] – to use the .usd-format and NVIDIA Isaac Sim as 
simulation software. NVIDIA Isaac Sim offers signifi-
cant benefits in regards to graphics and thus evaluation 
of vision-based algorithms over the established Gazebo 
simulator [4, 24]. 

3.1 Creation of Assets through Generative AI 
In the first step of asset creation, we apply generative AI. 
After applying multiple AI-models and optimizing their 
settings, we settled on using MV Dream and Magic3D 
[25, 26]. Both were used through the threestudio frame-
work [27]. 

With the goal in mind of generating models that are 
as diverse as possible, Magic3D appears to be the better 
solution. Therefore, depending on the assets to be gener-
ated, one has to find a trade-off between higher quality or 
diverse assets. Generally, both approaches are able to 
generate 3D-models in usable quality as Figure 2 illus-
trates. The left section of the figure displays textured ren-
derings, while the right section represents the normals of 
the meshes. 

 
Figure 2: Both 3D models depicted are generated with the 

prompt “Industrial Reflow Oven”. The upper 
oven is created by Magic3D, the lower one by 
MVDream. 
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To ease the creation of a large number of assets, we 

use a script that automatically launches the AI model us-
ing a list of predefined prompts. The importance of using 
the right prompt when generating an asset is even more 
important than in 2D use cases. A prompt like “a pencil” 
likely won’t yield a usable result. A more promising 
prompt would be “an upright standing pencil”. 

3.2 Manual Classification and Rating of 
Components 

Due to the high hardware requirements of the AI models 
used in the first step, we were only able to generate a lim-
ited number of 300 assets over the course of multiple 
months. This low number of assets allows us to conduct 
the second step of the pipeline manually. It is simplified 
by the fact, that no classification of assets is needed due 
to the known prompts used for their creation. 

However, the quality of the generated assets varies 
significantly, even within models generated with the 
same prompt. The models are categorized into three dif-
ferent categories. “Good” are all useable models, “bad” 
are models where the mesh or texture have significant 
problems and “failed” for assets where the AI completely 
failed. Around 30% of the models are rated “good” and 
thus deemed usable.  

The models generated in the first step and rated 
“good” in this step form the basis for the next step of en-
vironment composition. Figure 3 shows a comparison of 
two models rated “bad” and “good”, created with the 
same prompt.  

Additional work is necessary for AI generated assets, 
since the AI-models we use are not aware of absolute 
scales. We thus have to scale and rotate the generated as-
sets manually. 

3.3 Procedural Environment Composition 
For environment composition, we present a procedural 
approach that uses environment subdivision and provides 
interfaces to the methods outlined above through a mod-
ular approach. For our implementation, we rely solely on 
our AI-generated model database. The environment com-
position can be divided into three substeps which are dis-
played in order in Figure 4. 

During layout generation, the available space is de-
fined. A randomly sized rectangle is defined as the base 
for the layout. 

 
 

 

 
Figure 3: Even with the same prompt, the resulting assets 

can vary greatly in quality, as illustrated in this 
comparison of results from Magic3D with the 
prompt “Pick and Place Machine”. The upper 
model is rated as “bad”, the lower one as “good”. 

 
Figure 4: The environment composition step can be  

broken down into the three substeps of layout 
generation, definition of bounding spaces  
and asset placement. 

 
Figure 5: This exemplary procedurally generated floor lay-

out consists of an office space (green), storage 
space (blue) and multiple production lines (red). 

Next, the generated space is subdivided – also ran-
domly – into the available classes of space. For our im-
plementation, those are: 

• Office space 
• Storage space 
• Production space 
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The latter is further divided into multiple production 

lines, depending on the size of the plant. An exemplary 
result of this process is shown in Figure 5. 
Subsequently, the defined spaces are further partitioned 
into bounding spaces. They are defined by their size, po-
sition and subtype. An iterative algorithm divides the 
spaces defined by the layout into smaller rectangular 
bounding spaces. Their size is chosen randomly within 
predefined bounds that are dependent on the class of the 
space. An exception is made for the production lines: To 
achieve a more realistic, uniform layout, their size is only 
generated once for each layout and thus identical. 

Each bounding space is then equipped with a proce-
durally generated group of assets. For this purpose, a sub-
function is called for each bounding space. This function 
generates a fitting group of assets within the given space. 
In our implementation, the function is defined among 
others for workplaces, storage racks, and production 
lines. An exemplary, randomly generated production line 
is shown in Figure 6. 

 
Figure 6: The depicted exemplary production line com-

posed within step three consists of three differ-
ent AI-generated machines, which are used two 
or three times. 

For the placement of the production lines in our environ-
ments, a modification has been made: While the sub-
function generally generates a new group of assets for 
each bounding space, this is not fitting for the production 
lines. In practice, a production plant often operates sev-
eral identical production lines. Therefore, a number of 
types of production lines is randomly chosen after space 
partitioning. The different lines – such as the one in Fig-
ure 6 – are stored separately from the main .usd file. In-
stead of generating a new production line for each de-
fined space, one is then randomly chosen from the pre-
generated lines and placed within the available space in-
cluding a randomized offset. By adding the modifications 
for the production lines to our implementation, we are 
both able to generate random environments and also to 
obtain areas where a specific structure is necessary. 

3.4 Assessment of Generated Environments 
In this paper we restrict the application step to a qualita-
tive assessment of environments generated by the pipe-
line. An advanced application is discussed in chapter 4.2. 
Figure 7, Figure 8, and Figure 9 represent examples of 
each kind of area defined in our implementation. 

From the exemplary screenshots we conclude that the 
presented pipeline and its implementation are suitable for 
the generation of simulated environments for AMS. The 
generated environments do not yet reach the same level 
of detail as handcrafted simulated environments. How-
ever, while composing an environment by hand would 
take hours or days, our pipeline is capable of composing 
environments in minutes on a standard desktop computer. 
We expect that advances in generative AI and further im-
provements to the pipeline will make it possible to gen-
erate environments and their assets with higher quality 
and more resource efficient in the near future. 

 
Figure 7: This screenshot from an environment generated 

by our implementation of the pipeline depicts 
an office area composed with AI-generated 
workplaces. There are multiple different  
desks present, picked randomly from the  
asset database. 

 
Figure 8: This screenshot from an environment generated 

by our implementation of the pipeline depicts a 
storage area with a number of AI-generated 
storage racks. 



May et al.   Towards Imaginative Robots: A Generative Pipeline for Simulated Environments 

SNE 35(1) – 3/2025       67 

T N 

 
Figure 9: This screenshot from an environment generated 

by our implementation of the pipeline shows a 
production area consisting of multiple produc-
tion lines with AI-generated machines. The  
lines on the left are identical and have been  
procedurally composed within step three. 

4 Imaginative Robots 
Imagination is a key capability that signifies advanced in-
telligence. Humans, along with few other species, pos-
sess the ability to foresee the outcomes of events they 
have not experienced by mentally simulating them. This 
ability to mentally simulate novel scenarios is closely 
linked to high cognitive flexibility and problem-solving 
capabilities. [28, 29] This translates to robots as well: 
While humans can anticipate and adapt based on imag-
ined events, autonomous robots can hardly generalize 
and remain limited to explicitly programmed or learnt be-
haviours. Based on two well-established definitions of 
imagination from the Oxford English Dictionary [30] and 
the Oxford Dictionary of Philosophy [31], we define an 
imaginative robot as follows: 

An imaginative robot is a robot capable of inde-
pendently generating new interactive models of environ-
ments and situations that the system does not actually 
perceive, while combining knowledge in novel ways and 
anticipating possible scenarios. 

We argue that building on the capabilities of the pre-
sented pipeline, imaginative robots could be realized and 
substantially improve the adaptability and flexibility of 
AMS. In the following, we lay out a concept and path 
towards imaginative robots. 

4.1 Perception 
Like all autonomous systems [32], an imaginative robot 
needs to gather knowledge about its environment through 
perception.  

A key requirement of imaginative robots is a seman-
tically rich and multimodal environment perception. 
While a simple Lidar-sensor might be sufficient for basic 
navigation tasks, modern AMS including humanoid ro-
bots need more additional information such as provided 
by cameras. 

Meaningful information needs to be extracted and 
processed semantically. A key challenge is identifying 
relevant information and discarding irrelevant data. 
While modern foundation models such as Grounding-
DINO [33] are in theory capable of identifying arbitrary 
objects, the necessary computing power and storage hin-
der their widespread and continuous application. [34] 

4.2 Memory and Anticipation 
The second key component of an imaginative robot is its 
memory. This memory goes beyond classical maps for 
mobile robots and introduces multiple new components. 

Our concept involves building a comprehensive data-
base of environmental information and contexts ex-
tracted from reality on the one hand, and storing the ro-
bot's capabilities and related experiences on the other. 
This memory will need to comprise of a combination of 
vector- and graph-based databases to facilitate the effi-
cient storage and retrieval of necessary information. It 
also needs to rank the importance of information and al-
low for forgetting information, eg. by frequency of oc-
curence as well as impact on the system. This approach 
forms the basis for a key capability of imaginative robots: 
Anticipation. 

Based on past experiences and current information – 
such as sensory input or a high-level task to solve – an 
imaginative robot can make assumptions about future 
events and tasks. A crucial element of anticipation is to 
take action or prepare prior to the expected event [35]. 
This takes the form of thought experiments based on the 
pipeline presented in this paper and is the reason for call-
ing this concept imaginative robots. 

4.3 Thought Experiments 
As a thought experiment in the context of imaginative ro-
bots we define the intelligent generation of simulated en-
vironments in preparation for anticipated events. Using 
the modular generation process described previously, the 
system can target specific performance or knowledge 
gaps by constructing scenarios tailored to the robot’s 
needs.  
 



May et al.   Towards Imaginative Robots: A Generative Pipeline for Simulated Environments 

68        SNE 35(1) – 3/2025 

T N 
To improve domain adaptation and reduce the Sim2-

Real gap, memorized real-world relationships and ob-
jects are integrated directly into the simulations. 

An imaginative robot repeatedly invokes these 
thought experiments to learn from them, thereby improv-
ing task performance. Rather than stopping after a fixed 
number of trials, the system continuously monitors key 
metrics to determine when additional simulations are re-
quired – a concept related to curriculum learning and ac-
tive learning [36, 37].  

Because a large number of experiments can be run 
with minimal effort, the robot can focus on areas that 
need improvement while also testing a wide range of pos-
sible outcomes for upcoming scenarios. Once perfor-
mance in these thought experiments reaches a satisfac-
tory level, the robot stops them and completes the antici-
pation process. This way, a continually learning and self-
improving system could be implemented that closely re-
sembles natural mechanisms for imagination and antici-
pation. 

5 Discussion 
The validation of the generative pipeline presented in this 
paper underscores the pivotal role that generative AI 
plays in the future development of AMS. The structured 
and modular approach proves to be essential as it allows 
for updates in step with advances in AI technology, en-
suring that new and more advanced solutions can be 
seamlessly integrated.  

The pipeline can generate diverse and virtually unlim-
ited environments with minimal human input, although it 
does not fully replace human design expertise. It provides 
a scalable solution to the data generation challenges en-
countered in AMS training and validation, and enables 
rapid synthetic data production. 

The current implementation has several important 
limitations. Environment generation is restricted to 
strictly rectangular layouts with limited room classifica-
tions, while asset placement functions must be manually 
coded, which limits both variety and realism in the simu-
lated environments.  

Furthermore, the manual evaluation process for gen-
erated assets, while feasible for the limited scale demon-
strated, is likely to be unsustainable for larger-scale im-
plementations.  

 
 

The computational requirements also hinder wider 
application, as the generative AI models required approx-
imately 40 GB of VRAM, taking two to three hours per 
asset on an NVIDIA RTX 6000 ADA graphics card.  

The usage of generative AI thus represents significant 
hardware acquisition and operational costs. 

Despite these limitations, the pipeline offers a solid 
foundation for future work. Its design enables the incor-
poration of newer AI models and the potential automa-
tion of asset evaluation and improvement of layout gen-
eration. Such enhancements would reduce manual inter-
vention, improve overall quality, and expand the range of 
scenarios that can be simulated. The concept of imagina-
tive robots, while currently in a preliminary stage, is also 
supported by this approach, hinting at a future where au-
tonomous systems can generate and adapt to novel virtual 
experiences based on anticipated tasks. 

6 Conclusion and Future Work 
In this paper, we introduced a pipeline designed for gen-
erating simulated environments for AMS. This pipeline 
covers the entire spectrum from the creation of individual 
assets to the generation of complete simulated environ-
ments. It enables the rapid generation of large amounts of 
synthetic data, which is invaluable for robot training and 
validation. 

Special attention was paid to advances in generative 
AI, which offer significant improvements over traditional 
methods. To validate our proposed pipeline, we imple-
mented it and successfully generated a wide range of 
electronics manufacturing environments, populated by 
AI-generated assets. In addition, we introduced an inno-
vative concept aimed at creating imaginative robots. 

To exploit the full potential of our pipeline, we antic-
ipate further developments in generative AI, which is ad-
vancing at a remarkable pace. Our ongoing efforts will 
focus on integrating newer AI models, such as 
LATTE3D or TRELLIS [38, 39]. Initial tests have al-
ready shown gains in both efficiency and quality. Addi-
tionally, we foresee the application of generative AI at 
various stages of the pipeline, including asset evaluation 
and layout generation, thereby broadening the range of 
scenarios and domains the pipeline can address. In addi-
tion, interactive, physically simulated objects would ex-
pand the potential applications of the generated environ-
ments. 
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Building on these advancements, we aim to fully re-

alize the concept of imaginative robots. Currently, this is 
achievable to some extent, but as our pipeline evolves to 
generate new assets and types of environments on the go, 
its full potential will be unlocked.  

Until then, the use of existing assets and predefined 
environment classifications provides a sufficient interim 
solution. 
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